
A Linux Device Driver for Direct Access to the

Parallel Port

Kernel versions 2.0.x–2.4.x

Dirk Bächle

dl9obn@darc.de

August 18, 2009

Contents

1 Introduction 1

1.1 The story behind PPProg . 1
1.2 Basic operation . 1
1.3 Disclaimer . 3
1.4 What is Noweb? . 3

2 The device driver ppprog.c 4

2.1 The header file ppprog.h . 4
2.2 Header, includes and defines . 5
2.3 Device functions . 7

2.3.1 Opening and closing the device file 7
2.3.2 Reading and writing the data port 13
2.3.3 Extended reading and writing via ioctl 15

2.4 Module declarations . 18

3 Additional defines 22

4 The Makefile 22

5 Inserting and removing the module 23

6 Talking to the device 23

6.1 Creating a device file . 23
6.2 Example program . 24

i

1 Introduction

1.1 The story behind PPProg

While trying to find decent tools for programming a PIC 16F84A microcontroller
(or PICs in general) in-circuit under Linux I learned that there are a lot of
solutions on the Internet. However, all programs—ranging from prog841 to
picprg2—need root access to work. This is because they read/write from/to
the parallel port directly by means of inb and outb calls.
Basically, this works fine but I don’t like to fiddle around as root longer than
necessary. From my point of view this solution is slightly against a basic idea of
Linux/Unix: Usually all hardware accesses are handled by appropriate device
drivers and the user is supposed to trigger these accesses by system calls instead
of directly accessing IO ports.
I finally stumbled upon picprog, a Linux device driver by Raffael Stocker. It
enables reading, writing, bulk erase and much more. But having been devel-
oped back in 1999 it is pretty much outdated by now and does not support
the parport module. Additionally, it was tailored for a single PIC/adapter
combination only.
This raised the question of how to provide access to the parallel port without
needing root access, but being flexible enough to support a large variety of
PIC/adapter combinations or parallel devices in general. After some thought, I
came up with the idea of a driver for general-purpose parallel port programming.
It should

• be able to set the data and control lines of the parallel port and to read
back the data and status port,

• provide a way to generate command sequences like a strobe with—more
or less—exact timings,

• be compliant with the parport module and

• be general enough to support almost any special parallel device.

Additionally, a lot of define statements are used in the following that adapt
PPProg to the different kernel versions. The source you are currently looking
at was designed to run from 2.0.x up to 2.4.x.
For the newer 2.6.x kernels, a separate driver was built that is available at
http://ppprog.sf.net too.

1.2 Basic operation

PPProg is compliant to the parport module and lets you access the parallel
port of your computer without needing root access (except for loading the driver
itself at system startup).
At the start of the driver (via modprobe or insmod) you have to tell which
parallel port to use for all following read/write accesses. Then you can use the
functions write and read on an open handle to the appropriate device file (see
6.1 on p. 23) to read/write a byte from/to the data lines D0–D7 of the port:

1Available at www.picprg.com
2Available at http://www.bclane.com

1

#include <fcntl.h>

#include <unistd.h>

#include "ppprog.h"

int main(void)

{

char data;

int file_desc = open("/dev/ppprog", O_RDONLY);

if (file_desc < 0)

return -1;

/* Read data port lines */

read(file_desc, &data, 1);

printf("Data port: %X\n", data);

close(file_desc);

return 0;

}

However, the main target of this little driver are the so-called command se-

quences. A command sequence is a sequence of single writes to the data and
control lines of the parallel port. Between these writes a delay can be specified,
based on the udelay function. Since the command sequence function is executed
by the driver, i.e. in kernel mode, the resulting timings should be quite exact.
Two ioctl calls are available for this:

IOCTL PPPROG SEND Send a command sequence to the parallel port
IOCTL PPPROG CHECK Check the current status of the parallel port

As an example we want to generate a single strobe signal on data line D2, that
goes HIGH for 50µs and then changes to LOW again for at least 10µs.
The same program wrapper as above can be used, only the issued command
changes (see also 6.2 on page 24):

#include <fcntl.h>

#include <unistd.h>

#include "ppprog.h"

int main(void)

{

int data[5];

int file_desc = open("/dev/ppprog", O_RDONLY);

if (file_desc < 0)

return -1;

data[0] = 2; /* Two state changes */

data[1] = 0x4; /* Set D2 HIGH */

data[2] = 50; /* Wait 50us */

data[3] = 0x0; /* Set D2 LOW */

data[4] = 10; /* Wait 10us */

2

ioctl(file_desc, IOCTL_PPPROG_SEND, data);

close(file_desc);

return 0;

}

After initialization of the device file, the array of command sequences is set
up. The first value in this array is the number n of transitions that follow. In
this example we have two state changes, so n = 2. Each single state command

consists of two integers:

1. The data that should be applied to the parallel port. It is packed into a
single integer, where

Bits 0–7 Data port
Bits 8–15 Status port
Bits 16–23 Control port

2. The number of µs to wait, after the data has been applied.

Finally, the command sequence is sent to the attached device via the ioctl call.
For a more realistic example of how to use the PPProg driver, take a look at
the library PicProg3. It can program a 12F629 PIC in-circuit via a special
parallel port adapter.

1.3 Disclaimer

This device driver is provided as is, without warranty of any kind, either ex-
pressed or implied, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The entire risk as to the
quality and performance of the driver is with you.
Please, also regard the Gnu GPL disclaimer on page 26 and the full text in the
file COPYING.
I am neither an expert kernel programmer, nor an experienced writer of device
drivers. This work is a by-product of the first device driver that I ever created.
So, despite its more or less promising appearance it still has to be regarded a
quick hack.

1.4 What is Noweb?

This documentation was generated using Noweb. Noweb is maintained by
Norman Ramsey and provides a tool for Literate Programming, an approach
where the program and its documentation are written simultaneously. In doing
so, the emphasis should be put on describing how the program works.
Derived from similar tools like Web and Cweb, Noweb uses the two pro-
grams notangle and noweave to extract the program and the documentation,
respectively, from one source file.

3Also available at http://ppprog.sf.net

3

Source files consist of so called chunks. A chunk can contain a piece of text, or
program code, or both. One can think of chunks as little pieces of code, that will
be combined to the complete program by notangle no matter what language
it is (C, C++, Pascal, Basic, Fortran, Lisp, Scheme, HTML, TEX, LATEX, awk,
perl, . . .).
These code fragments are woven together, logically by the surrounding text, and
physically by labels that get defined or referred to in a chunk. With this, one
does not have to jump around in the source code for inserting a new variable,
define or function. They are added wherever needed and this is what Noweb—
and Literate Programming in general—is all about: Developing and presenting
the idea behind the program instead of the mere code itself.
Documentation can be output in LATEX, TEX and HTML. The chunks are num-
bered and referenced automatically and at the end of each block you find a list
of the defined and used variables.
For further informations about Noweb, have a look at its homepage

http://www.eecs.harvard.edu/~nr/noweb/

or visit

http://www.literateprogramming.com

which discusses Literate Programming in general.

2 The device driver ppprog.c

While developing the device driver the recommendations in [1, chap. 5] and [2,
chap. 4] are followed, respectively.
The basic structure of the device driver module looks like this:

4a 〈ppprog.c 4a〉≡ 9b ⊲

〈Header 5b〉
〈Include files 5d〉
〈Defines 6c〉
〈Global variables 7a〉
〈Device declarations 7b〉
〈Module declarations 18c〉

2.1 The header file ppprog.h

The according header file ppprog.h has the following structure:

4b 〈ppprog.h 4b〉≡
〈HF:Header 5a〉

#ifndef _PPPROG_H

#define _PPPROG_H

〈HF:Include files 15b〉
〈HF:Defines 15a〉

4

#endif

Defines:
PPPROG H, never used.

5a 〈HF:Header 5a〉≡ (4b)

〈GPL disclaimer 26〉

/** \file ppprog.h

* Header file for the Linux Device Driver ppprog.c and all programs using the module.

〈Common disclaimer 5c〉

2.2 Header, includes and defines

Let us begin with the header of our device driver module. Although Noweb is
already used to document the source, a lot of Doxygen commands are added,
such that a short documentation for quick reference can be generated.

5b 〈Header 5b〉≡ (4a) 8c ⊲

〈GPL disclaimer 26〉

/** \file ppprog.c

* Linux Device Driver for direct access to the parallel port.

〈Common disclaimer 5c〉

The common disclaimer as included to all source and header files:

5c 〈Common disclaimer 5c〉≡ (5)

* \author Dirk Baechle, dl9obn@darc.de

* \version 1.0

* \date 2005-05-12

*/

/* This file was created automatically from the file ‘ppprog.nw’ by NOWEB.

* If you want to make changes, please edit the source ‘ppprog.nw’.

* A precompiled documentation can be found in ‘ppprog.pdf’ and ‘ppprog.ps’,

* respectively.

* Read it to understand why things are as they are. Thank you!

*/

Next are the include files, split into system header files and ppprog.h.

5d 〈Include files 5d〉≡ (4a)

〈Linux includes 6a〉

#include "ppprog.h"

5

A whole bunch of Linux headers is added to support the module with functions
like inb, outb and udelay.

6a 〈Linux includes 6a〉≡ (5d) 9a ⊲

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/ioport.h>

#include <asm/io.h>

/* Deal with CONFIG_MODVERSIONS */

#if CONFIG_MODVERSIONS==1

#define MODVERSIONS

#include <linux/modversions.h>

#endif

/* For character devices */

#include <linux/fs.h>

#include <linux/wrapper.h>

#ifndef KERNEL_VERSION

#define KERNEL_VERSION(a,b,c) ((a)*65536+(b)*256+(c))

#endif

#if LINUX_VERSION_CODE > KERNEL_VERSION(2,2,0)

#include <asm/uaccess.h>

#include <linux/delay.h>

#else

#include <asm/delay.h>

#endif

〈Module information 6b〉

Defines:
KERNEL VERSION, used in chunks 6b, 12–14, and 17–21.
MODVERSIONS, never used.

In newer kernels the macro MODULE LICENSE needs to be set to GPL, this avoids
a warning message while inserting the module.

6b 〈Module information 6b〉≡ (6a) 20b ⊲

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)

MODULE_LICENSE("GPL");

MODULE_AUTHOR("Dirk Baechle");

MODULE_DESCRIPTION("Driver for direct access to the parallel port");

MODULE_SUPPORTED_DEVICE("ppprog");

#endif

Uses KERNEL VERSION 6a.

Now, the name of the device is defined as it appears in /proc. But most
important is the definition of success...

6

6c 〈Defines 6c〉≡ (4a)

/** The value for success. */

#define SUCCESS 0

/** The name of the device as it appears in /proc/devices. */

static char DEVICE_NAME[10] = "ppprog";

Defines:
DEVICE NAME, used in chunks 10b, 11c, and 21.
SUCCESS, used in chunks 8a, 16a, and 19.

A flag is added to the global variables. It tells whether the device has already
been opened or not.

7a 〈Global variables 7a〉≡ (4a) 7c ⊲

/** Is the device open? 1 equals yes, 0 equals no. */

static int device_is_open = 0;

Defines:
device is open, used in chunks 8 and 12.

2.3 Device functions

Starting with the declarations for the device, the following functions should be
supported:

7b 〈Device declarations 7b〉≡ (4a)

〈Device Open 8a〉
〈Device Release 12〉
〈Device Read 13c〉
〈Device Write 14〉
〈Device IOCtl 16a〉

2.3.1 Opening and closing the device file

The function ppprog open is called whenever a process attempts to open the
device file. First, it has to be ensured that the region of IO ports is still accessible
and then they have to be reserved for use by the driver. But which ports are
needed?
For a start, the IO address 0x378 is defined as the default base address that is
about to be used.

7c 〈Global variables 7a〉+≡ (4a) ⊳ 7a 10b ⊲

/** Base address of the used parallel port (Default: 0x378) */

static int LptBase = 0x378;

Defines:
LptBase, used in chunks 10a, 11c, 13, 14, 17, 18b, and 20a.

7

ppprog open checks whether the needed region of ports is still accessible and
the device has not been opened yet. Then, all required ports are claimed until
the device is released again (see ppprog release).
The parallel port adapter needs to register itself with the Linux parport driver,
which guards the parallel port in newer Linux versions. So, following the pro-
gramming outlines in [3] and the source of the paride module in the kernel
sources, ppprog open tries to claim the parallel port from parport.

8a 〈Device Open 8a〉≡ (7b)

/** Attempts to open the device file.

* @param inode Pointer to the inode

* @param file Pointer to the device file

* @return 0 for success, else device is busy

*/

static int ppprog_open(struct inode *inode, struct file *file)

{

#if DEBUG

printk(KERN_DEBUG "ppprog_open(%p, %p)\n", inode, file);

#endif

〈check if device has not been opened yet 8b〉
〈register driver with parport 10a〉
〈claim parallel port regions 11c〉

device_is_open++;

MOD_INC_USE_COUNT;

return(SUCCESS);

}

Defines:
ppprog open, used in chunk 18d.

Uses device is open 7a and SUCCESS 6c.

8b 〈check if device has not been opened yet 8b〉≡ (8a)

/* Is the device open already? */

if (device_is_open)

{

#if DEBUG

printk(KERN_DEBUG "Device PPPROG is already opened!\n");

#endif

return(-EBUSY);

}

Uses device is open 7a.

In order to register the parallel driver, some definitions from the parport header
are needed.

8

8c 〈Header 5b〉+≡ (4a) ⊳ 5b

/* Comment following define if ‘‘parport’’ */

/* driver should not be used. */

#define USE_PARPORT 1

Defines:
USE PARPORT, used in chunks 9–11, 13, 17, and 18b.

9a 〈Linux includes 6a〉+≡ (5d) ⊳ 6a

#ifdef USE_PARPORT

#include <linux/parport.h>

#endif

Uses USE PARPORT 8c.

A new set of functions is added for interacting with the parport module:

9b 〈ppprog.c 4a〉+≡ ⊳ 4a

#ifdef USE_PARPORT

〈Parport support functions 9c〉
#endif

Uses USE PARPORT 8c.

9c 〈Parport support functions 9c〉≡ (9b)

〈Attach port 9d〉
〈Detach port 9e〉

ppprog attach is called whenever the function parport register driver de-
tects a new parallel port. Since the needed port is directly allocated in ppprog open,
there is nothing to do. . .

9d 〈Attach port 9d〉≡ (9c)

/** Attaches the found port to the device.

* @param port Pointer to struct for the found parallel port

*/

void ppprog_attach(struct parport *port)

{

;

}

Defines:
ppprog attach, used in chunk 10b.

ppprog detach is called whenever the function parport register driver de-
tects that a parallel port vanished and therefore should be detached. Like for
ppprog attach, we do not really care. . .

9

9e 〈Detach port 9e〉≡ (9c)

/** Is called if a parallel port should be detached.

* @param port Pointer to struct for the parallel port

*/

void ppprog_detach(struct parport *port)

{

;

}

Defines:
ppprog detach, used in chunk 10b.

10a 〈register driver with parport 10a〉≡ (8a)

#ifdef USE_PARPORT

〈register parallel device 11a〉
#else

/* Is the region for the parallel port adapter still accessible? */

if (check_region(LptBase, 3) != 0)

{

#if DEBUG

printk(KERN_DEBUG "IO ports for parallel port adapter are not accessible!\n");

#endif

return(-EBUSY);

}

#endif

Uses LptBase 7c and USE PARPORT 8c.

A special struct is needed, storing the pointers to the functions ppprog attach

and ppprog detach.

10b 〈Global variables 7a〉+≡ (4a) ⊳ 7c 11b ⊲

#ifdef USE_PARPORT

/* Function prototypes */

void ppprog_attach(struct parport *);

void ppprog_detach(struct parport *);

/** Stores the pointers to the functions for attaching and detaching

* detected parallel ports. */

static struct parport_driver ppprog_driver = {

DEVICE_NAME,

ppprog_attach,

ppprog_detach,

NULL

};

#endif

Defines:
ppprog driver, used in chunk 11a.

Uses DEVICE NAME 6c, ppprog attach 9d, ppprog detach 9e, and USE PARPORT 8c.

10

11a 〈register parallel device 11a〉≡ (10a)

if (parport_register_driver(&ppprog_driver) != 0)

{

#if DEBUG

printk(KERN_DEBUG "PPPROG driver could not be registered with parport module!\n");

#endif

return(-EBUSY);

}

Uses ppprog driver 10b.

The pointer ppprog port stores the allocated parallel port, which is derefer-
enced again in ppprog release. ppprog device keeps the pointer to the regis-
tered device. It is needed for claiming the ports and unregistering.

11b 〈Global variables 7a〉+≡ (4a) ⊳ 10b 20c ⊲

#ifdef USE_PARPORT

/** Pointer to the struct of the allocated parallel port. */

struct parport *ppprog_port;

/** Pointer to the struct of the registered device, is needed

* for unregistering. */

struct pardevice *ppprog_device = 0;

#endif

Defines:
ppprog device, used in chunks 11c, 13, 17, and 18b.
ppprog port, used in chunk 11c.

Uses USE PARPORT 8c.

If the claiming of ports via the parport module fails, the device is unregistered
immediately.

11c 〈claim parallel port regions 11c〉≡ (8a)

#ifdef USE_PARPORT

/* Get port with correct base number */

ppprog_port = parport_find_base(LptBase);

if (ppprog_port == NULL)

{

#if DEBUG

printk(KERN_DEBUG "Parallel IO port %X could not be found!\n", LptBase);

#endif

return(-EBUSY);

}

ppprog_device = parport_register_device(ppprog_port,

DEVICE_NAME,

NULL,

NULL,

NULL,

11

0,

NULL);

if (ppprog_device > 0)

{

if (parport_claim(ppprog_device) != 0)

{

parport_unregister_device(ppprog_device);

#if DEBUG

printk(KERN_DEBUG "Parallel IO port %X is not accessible via parport driver!\n", LptBase);

#endif

return(-EBUSY);

}

}

#else

/* Claim port regions */

request_region(LptBase, 3, DEVICE_NAME);

#endif

Uses DEVICE NAME 6c, LptBase 7c, ppprog device 11b, ppprog port 11b, and USE PARPORT 8c.

ppprog release is called if a process closes the device file. It does not have
a return value because it can not fail. It releases the region of ports needed
for IO and unregisters the driver from the parport module. Afterwards, the
device is open counter is decreased.

12 〈Device Release 12〉≡ (7b)

/** Closes the device file.

* @param inode Pointer to the inode

* @param file Pointer to the device file

*/

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

static int ppprog_release(struct inode *inode, struct file *file)

#else

static void ppprog_release(struct inode *inode, struct file *file)

#endif

{

#if DEBUG

printk(KERN_DEBUG "ppprog_release(%p, %p)\n", inode, file);

#endif

〈release parallel port regions 13a〉
〈unregister parallel device driver 13b〉

/* Release device counter */

device_is_open--;

MOD_DEC_USE_COUNT;

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

12

return(0);

#endif

}

Defines:
ppprog release, used in chunk 18d.

Uses device is open 7a and KERNEL VERSION 6a.

13a 〈release parallel port regions 13a〉≡ (12)

#ifdef USE_PARPORT

parport_release(ppprog_device);

#else

/* Release port regions */

release_region(LptBase, 3);

#endif

Uses LptBase 7c, ppprog device 11b, and USE PARPORT 8c.

13b 〈unregister parallel device driver 13b〉≡ (12)

#ifdef USE_PARPORT

parport_unregister_device(ppprog_device);

#endif

Uses ppprog device 11b and USE PARPORT 8c.

2.3.2 Reading and writing the data port

ppprog read is called whenever a process, that has already opened the device
file, attempts to read from it. Returning the status and control bits will be
handled by means of ioctl functions. A read returns a single char in the given
buffer, representing the data lines D0–D7.

13c 〈Device Read 13c〉≡ (7b)

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

/** Reads from the already opened device.

* @param file Pointer to the device file

* @param buffer Pointer to the buffer

* @param length Length of the buffer

* @param offset Offset to the file

* @return Number of bytes read

*/

static ssize_t ppprog_read(struct file *file, char *buffer, size_t length,

loff_t *offset)

#else

/** Reads from the already opened device.

* @param inode Pointer to inode

* @param file Pointer to the device file

13

* @param buffer Pointer to the buffer

* @param length Length of the buffer

* @return Number of bytes read

*/

static int ppprog_read(struct inode *inode, struct file *file, char *buffer,

int length)

#endif

{

#if DEBUG

printk(KERN_DEBUG "ppprog_read(%p, %p, %p)\n", file, buffer, &length);

#endif

put_user(inb(LptBase), buffer);

return 1;

}

Defines:
ppprog read, used in chunk 18d.
ssize t, never used.

Uses KERNEL VERSION 6a and LptBase 7c.

ppprog write is called if somebody tries to write to the device file.
Again—just like in ppprog read—a single char is processed and written to the
data port of the parallel interface.

14 〈Device Write 14〉≡ (7b)

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

/** Writes to the already opened device.

* @param file Pointer to the device file

* @param buffer Pointer to the buffer

* @param length Length of the buffer

* @param offset Offset to the file

* @return Number of bytes written

*/

static ssize_t ppprog_write(struct file *file, const char *buffer, size_t length,

loff_t *offset)

#else

/** Writes to the already opened device.

* @param inode Pointer to inode

* @param file Pointer to the device file

* @param buffer Pointer to the buffer

* @param length Length of the buffer

* @return Number of bytes written

*/

static int ppprog_write(struct inode *inode, struct file *file,

const char *buffer, int length)

#endif

{

14

#if DEBUG

printk(KERN_DEBUG "ppprog_write (%p, %s, %d)", file, buffer, length);

#endif

outb((char) (*buffer & 0xFF), LptBase);

return 1;

}

Defines:
ppprog write, used in chunk 18d.
ssize t, never used.

Uses KERNEL VERSION 6a and LptBase 7c.

2.3.3 Extended reading and writing via ioctl

The ioctl function is the very core of this little device driver. While developing
it in the following chunks, the logical actions are used as defined in the header
file ppprog.h:

IOCTL PPPROG SEND Send a command sequence to the parallel port
IOCTL PPPROG CHECK Check the current status of the parallel port

They have to be declared in a separate header file because they need to be
known to both, the kernel module and the functions calling ioctl in the user
program.
Our ioctl calls do not return a value, due to the IOR keyword. As parameter
all the functions get a pointer to int.
Additionally, the major device number and the name of the device file are
defined. Please, note that DEVICE FILE NAME and DEVICE NAME are something
different although they have the same content.

15a 〈HF:Defines 15a〉≡ (4b) 16c ⊲

/** The major device number */

#define DEVICE_MAJOR 219

/** The provided ioctl functions */

#define IOCTL_PPPROG_SEND _IOR(DEVICE_MAJOR, 0, int *)

#define IOCTL_PPPROG_CHECK _IOR(DEVICE_MAJOR, 1, int *)

/** The name of the device file */

#define DEVICE_FILE_NAME "ppprog"

Defines:
DEVICE FILE NAME, never used.
DEVICE MAJOR, used in chunk 21.
IOCTL PPPROG CHECK, used in chunks 18a and 25a.
IOCTL PPPROG SEND, used in chunks 16b, 24c, and 25a.

Since the ioctl call is used, ioctl.h needs to be included.

15

15b 〈HF:Include files 15b〉≡ (4b)

#include <linux/ioctl.h>

ppprog ioctl is called whenever a process tries to do an ioctl on our device
file. It has two extra parameters: the number of the called ioctl and the
parameter given to the ioctl function.

16a 〈Device IOCtl 16a〉≡ (7b)

/** Handles the ioctl calls of the device driver.

* @param inode Pointer to the inode

* @param file Pointer to the file

* @param ioctl_num Number of the ioctl

* @param ioctl_param Parameter, i.e. pointer to int

* @return 0

*/

int ppprog_ioctl(struct inode *inode, struct file *file,

unsigned int ioctl_num, unsigned long ioctl_param)

{

int *temp, cnt, commands;

int data = 0;

switch (ioctl_num)

{

〈Case Send 16b〉
〈Case Check 18a〉

}

return(SUCCESS);

}

Defines:
ppprog ioctl, used in chunk 18d.

Uses SUCCESS 6c.

The first Case statement sends a sequence of commands.

16b 〈Case Send 16b〉≡ (16a)

case IOCTL_PPPROG_SEND: temp = (int *) ioctl_param;

〈send command sequence 17〉
break;

Uses IOCTL PPPROG SEND 15a.

Passing the number of signals to be asserted as a simple integer is quite risky.
In order to prevent our system from freezing for some time—or forever if things
go really, really bad—an upper bound is defined.

16

16c 〈HF:Defines 15a〉+≡ (4b) ⊳ 15a

/** Maximum number of parallel port assertions within a

* single command sequence */

#define MAX_ASSERTIONS 64

Defines:
MAX ASSERTIONS, used in chunk 17.

For every single command of the sequence, the data and control bits are ex-
tracted and asserted to the ports. Then, the specified delay is added.

17 〈send command sequence 17〉≡ (16b)

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

get_user(commands, temp++);

#else

commands = get_user(temp++);

#endif

for (cnt = 0;

((cnt < MAX_ASSERTIONS) && (cnt < commands));

cnt++)

{

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

get_user(data, temp++);

#else

data = get_user(temp++);

#endif

#ifdef USE_PARPORT

parport_write_data(ppprog_device->port, (data & 0xFF));

parport_write_control(ppprog_device->port, ((data >> 16) & 0xFF));

#else

outb((char) (data & 0xFF), LptBase);

outb((char) ((data >> 16) & 0xFF), LptBase+2);

#endif

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

get_user(data, temp++);

#else

data = get_user(temp++);

#endif

if (data > 0)

udelay(data);

}

Uses KERNEL VERSION 6a, LptBase 7c, MAX ASSERTIONS 16c, ppprog device 11b,
and USE PARPORT 8c.

17

Reading data words is similar to writing. The pointer ioctl param and the
kernel function put user are used to fill the first buffer location with data.

18a 〈Case Check 18a〉≡ (16a)

case IOCTL_PPPROG_CHECK: temp = (int *) ioctl_param;

〈check parallel port 18b〉
break;

Uses IOCTL PPPROG CHECK 15a.

18b 〈check parallel port 18b〉≡ (18a)

#ifdef USE_PARPORT

data = (parport_read_control(ppprog_device->port) << 16);

data |= (parport_read_status(ppprog_device->port) << 8);

data |= parport_read_data(ppprog_device->port);

#else

data = (inb(LptBase+2) & 0xFF) << 16;

data |= (inb(LptBase+1) & 0xFF) << 8;

data |= inb(LptBase) & 0xFF;

#endif

put_user(data, temp);

Uses LptBase 7c, ppprog device 11b, and USE PARPORT 8c.

2.4 Module declarations

So much for the device driver. Now, only the module declarations are left:

18c 〈Module declarations 18c〉≡ (4a)

〈VFS Struct 18d〉
〈Init Module 19〉
〈Cleanup Module 21b〉

The struct Fops holds the functions to be called by the VFS (Virtual Filesystem
Switch) if a process interacts with the created device.

18d 〈VFS Struct 18d〉≡ (18c)

/** Struct that holds the VFS functions for the device. */

static struct file_operations Fops =

{

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)

owner: THIS_MODULE,

read: ppprog_read, /* read */

write: ppprog_write, /* write */

ioctl: ppprog_ioctl, /* ioctl */

open: ppprog_open, /* open */

release: ppprog_release /* release */

#else

NULL, /* seek */

18

ppprog_read, /* read */

ppprog_write, /* write */

NULL, /* readdir */

NULL, /* select */

ppprog_ioctl, /* ioctl */

NULL, /* mmap */

ppprog_open, /* open */

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

NULL, /* flush */

#endif

ppprog_release /* release */

#endif

};

Uses KERNEL VERSION 6a, ppprog ioctl 16a, ppprog open 8a, ppprog read 13c,
ppprog release 12 12, and ppprog write 14.

While initializing the module, the main task is to register the device driver. The
claiming of IO ports is done in ppprog open. This enables other applications—
i.e. the parport driver—to use the printer port for different tasks as long as the
device ppprog is not opened, although the module may be loaded.

19 〈Init Module 19〉≡ (18c)

/** Initializes the module by registering the device driver.

* @return 0 for success, < 0 for an error

*/

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,13)

static int ppprog_init(void)

#else

int init_module(void)

#endif

{

int ret;

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0)

〈process module arguments 20a〉
#endif

〈try to register the device driver 21a〉

return(SUCCESS);

}

Defines:
init module, used in chunk 21a.
ppprog init, used in chunk 21b.

Uses KERNEL VERSION 6a and SUCCESS 6c.

So far, the fixed LPT port base address 0x378 was used. It would be nice to
be able to switch to different port addresses without having to recompile the
driver.

19

Unlike in DOS or Windows there is no direct mapping from the port number to
an appropriate IO base address for the parallel port under Linux. The user may
specify the port number to be used via the module parameter lp (0-3). Then a
default IO base address is used which is 0x278 for the lp number ‘1’ and 0x378

else. If necessary, this address can be overwritten by the iobase parameter. . .

20a 〈process module arguments 20a〉≡ (19)

switch (lp)

{

case 0: LptBase = 0x378; break;

case 1: LptBase = 0x278; break;

case 2: LptBase = 0x378; break;

case 3: LptBase = 0x378; break;

}

if (iobase > 0)

LptBase = iobase;

Uses iobase 20c, lp 20c, and LptBase 7c.

The module parameter descriptions are added to the info section at the start of
the file. . .

20b 〈Module information 6b〉+≡ (6a) ⊳ 6b

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0)

MODULE_PARM (lp, "i");

MODULE_PARM (iobase, "i");

MODULE_PARM_DESC(lp, "Parallel port that should be used (0-3)");

MODULE_PARM_DESC(iobase, "Parallel port i/o base address. Overrides ‘lp’. (default: 0x378)"

#endif

Uses iobase 20c, KERNEL VERSION 6a, and lp 20c.

The variables themselves are declared to be global.

20c 〈Global variables 7a〉+≡ (4a) ⊳ 11b

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0)

/** Number of the parallel port that should be used (0-3),

* where ‘‘0’’ refers to \c LPT1. */

static int lp = -1;

/** Base IO port address of the parallel port. Overrides \a lp,

* if necessary. */

static int iobase = -1;

#endif

Defines:
iobase, used in chunk 20.
lp, used in chunk 20.

Uses KERNEL VERSION 6a.

20

For earlier kernels (< 2.4.0) the function register chrdev is replaced by module register chrdev

(see [1]).

21a 〈try to register the device driver 21a〉≡ (19)

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)

ret = register_chrdev(DEVICE_MAJOR, DEVICE_NAME, &Fops);

#else

ret = module_register_chrdev(0, DEVICE_NAME, &Fops);

#endif

/* Negative return values signify an error */

if (ret < 0)

{

printk(KERN_ERR "PPPROG: <init_module> : Registering device failed with %d!", ret);

return(ret);

}

printk(KERN_INFO "PPPROG: Device registered with major device number %d\n", DEVICE_MAJOR);

Uses DEVICE MAJOR 15a, DEVICE NAME 6c, init module 19, and KERNEL VERSION 6a.

The last thing to do is the cleanup. The device driver has to be unregistered
for removing the kernel module.

21b 〈Cleanup Module 21b〉≡ (18c)

/** Cleanup by unregistering the appropriate file from /proc

*/

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,13)

static void ppprog_exit(void)

#else

void cleanup_module(void)

#endif

{

int ret;

〈unregister the device 21c〉

}

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,3,13)

module_init(ppprog_init);

module_exit(ppprog_exit);

#endif

Defines:
cleanup module, used in chunk 21c.
ppprog exit, never used.

Uses KERNEL VERSION 6a and ppprog init 19.

For earlier kernels (< 2.4.0) the function unregister chrdev is replaced by
module unregister chrdev (see [1]).

21

21c 〈unregister the device 21c〉≡ (21b)

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)

ret = unregister_chrdev(DEVICE_MAJOR, DEVICE_NAME);

#else

ret = module_unregister_chrdev(DEVICE_MAJOR, DEVICE_NAME);

#endif

if (ret < 0)

{

printk(KERN_ERR "PPPROG: <cleanup_module> : Error %d while unregistering\n", ret);

}

Uses cleanup module 21b, DEVICE MAJOR 15a, DEVICE NAME 6c, and KERNEL VERSION 6a.

That is it. The device driver module is now ready for use. But, how does this
usage look like?

3 Additional defines

Depending on the flags the Linux kernel was compiled with, there are two other
symbols that might have to be included to the device driver module.

• SMP — Symmetrical MultiProcessing. This has to be defined if the
kernel was compiled to support symmetrical multiprocessing, even if just
one CPU is used.

• CONFIG MODVERSIONS — If CONFIG MODVERSIONS was enabled in the ker-
nel the symbol has to be defined when compiling the module and also
/usr/include/linux/modversions.h has to be included.

One possible place to check how the kernel was built is /usr/include/linux/config.h.

4 The Makefile

Now the module can be compiled by using the prepared Makefile with the
command

make

and then—changing to root mode—the new module and the created headers
should be installed by

make install

Please, regard that the kernel sources have to be installed for compiling the
module.
For older versions of the Linux kernel (< 2.4.0) the following Makefile can be
used. The variable USE PARPORT probably has to be undefined then.

22

22 〈Makefile.old 22〉≡
TARGET=ppprog

CC=gcc

MODCFLAGS= -O2 -Wall -DMODULE -D__KERNEL__ -DLINUX

all: $(TARGET).o

$(TARGET).o: $(TARGET).c $(TARGET).h /usr/include/linux/version.h

$(CC) $(MODCFLAGS) -c $(TARGET).c

$(TARGET).c: $(TARGET).nw

notangle -L -R$(TARGET).c $(TARGET).nw > $(TARGET).c

$(TARGET).h: $(TARGET).nw

notangle -L -R$(TARGET).h $(TARGET).nw > $(TARGET).h

5 Inserting and removing the module

Get root to insert and remove kernel modules. Then, the device driver module
can be inserted by the command:

modprobe ppprog

If everything went fine and the module was properly inserted, it should appear
in /proc/modules. This can be checked with either

cat /proc/modules

or

lsmod

Now, the device file (see 6.1) can communicate with the parallel port.
For removing the module again, one has to type:

rmmod ppprog

6 Talking to the device

6.1 Creating a device file

In order to talk to the device a device file has to be created. Being root one
has to change the current directory to /dev. Then, the proper device file can
be created by:

mknod ppprog c 219 0

23

6.2 Example program

Now, a quick example is given of how to use the ioctl functions. The task is
to output a short message to a printer at the parallel port. Instead of simply
calling lpr we do it all on our own, using PPProg only:

24a 〈ppprogtest.c 24a〉≡
#include <fcntl.h>

#include <unistd.h>

#include "ppprog.h"

〈send a single character 25a〉

int main(void)

{

int file_desc, data[10];

〈try to open device file 24b〉
〈init parallel port 24c〉
〈write message 25b〉

/* close device file */

close(file_desc);

return(0);

}

Defines:
main, never used.

The first step is to open the decive file, such that we can talk to our driver.

24b 〈try to open device file 24b〉≡ (24a)

/* try to open device file */

file_desc = open("/dev/ppprog", O_RDONLY);

if (file_desc < 0)

{

printf("Can not open device file ppprog!\n");

return(-1);

}

We initialize the parallel port to a predefined state by setting all lines to ‘0’,
except the lower three bits of the command word. The STROBE line (bit #0)
and INIT (bit #2) are active low while the signal gets negated automatically.
So for not activating them we have to set them to a ‘1’ each. The AUTOFEED

(bit #1) is enabled in order to convert single CR (carriage return) characters to
a proper CRLF combination (carriage return, followed by a line feed).

24c 〈init parallel port 24c〉≡ (24a)

data[0] = 1;

data[1] = 0x070000;

data[2] = 0;

24

ioctl(file_desc, IOCTL_PPPROG_SEND, &data);

Uses IOCTL PPPROG SEND 15a.

Before we try to send the current character, a small loop waits until the printer
is ready. Then, the command sequence is set up such that a strobe is generated
while the data to be output is applied simultaneously. A single call of the ioctl
function “fires” the sequence of port writes and prints the single letter.

25a 〈send a single character 25a〉≡ (24a)

send_char(int dfile, const char *sChar)

{

int sData[5];

/* Wait for printer */

ioctl(dfile, IOCTL_PPPROG_CHECK, &sData);

while ((*sData & 0x980000) == 0x0)

ioctl(dfile, IOCTL_PPPROG_CHECK, &sData);

/* Set data for command sequence */

sData[0] = 2;

sData[1] = 0x060000 | *sChar;

sData[2] = 400;

sData[3] = 0x070000 | *sChar;

sData[4] = 0;

/* Send command sequence */

ioctl(dfile, IOCTL_PPPROG_SEND, &sData);

}

Uses IOCTL PPPROG CHECK 15a and IOCTL PPPROG SEND 15a.

Finally, the output text is constructed by sending the single characters, one
after the other.

25b 〈write message 25b〉≡ (24a)

send_char(file_desc, "H");

send_char(file_desc, "e");

send_char(file_desc, "l");

send_char(file_desc, "l");

send_char(file_desc, "o");

send_char(file_desc, " ");

send_char(file_desc, "W");

send_char(file_desc, "o");

send_char(file_desc, "r");

send_char(file_desc, "l");

send_char(file_desc, "d");

send_char(file_desc, "!");

send_char(file_desc, "\n");

25

GPL disclaimer

The GNU GPL disclaimer, as used by all source files. . .

26 〈GPL disclaimer 26〉≡ (5)

/* PPProg - A Linux Device Driver for direct access to the

* parallel port. (Kernel versions 2.0.x-2.4.x)

* Copyright (C) 2005 by Dirk Baechle (dl9obn@darc.de)

*

* This program is free software; you can redistribute it and/or

* modify it under the terms of the GNU General Public License

* as published by the Free Software Foundation; either version 2

* of the License, or (at your option) any later version.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public

* License along with this program; if not, write to the

*

* Free Software Foundation, Inc.

* 675 Mass Ave

* Cambridge

* MA 02139

* USA

*

*/

List of code chunks

This list was generated automatically by Noweb. The numeral is that of the
first definition of the chunk.

〈Attach port 9d〉
〈Case Check 18a〉
〈Case Send 16b〉
〈check if device has not been opened yet 8b〉
〈check parallel port 18b〉
〈claim parallel port regions 11c〉
〈Cleanup Module 21b〉
〈Common disclaimer 5c〉
〈Defines 6c〉
〈Detach port 9e〉
〈Device declarations 7b〉
〈Device IOCtl 16a〉
〈Device Open 8a〉
〈Device Read 13c〉

26

〈Device Release 12〉
〈Device Write 14〉
〈Global variables 7a〉
〈GPL disclaimer 26〉
〈Header 5b〉
〈HF:Defines 15a〉
〈HF:Header 5a〉
〈HF:Include files 15b〉
〈Include files 5d〉
〈Init Module 19〉
〈init parallel port 24c〉
〈Linux includes 6a〉
〈Makefile.old 22〉
〈Module declarations 18c〉
〈Module information 6b〉
〈Parport support functions 9c〉
〈ppprog.c 4a〉
〈ppprog.h 4b〉
〈ppprogtest.c 24a〉
〈process module arguments 20a〉
〈register driver with parport 10a〉
〈register parallel device 11a〉
〈release parallel port regions 13a〉
〈send a single character 25a〉
〈send command sequence 17〉
〈try to open device file 24b〉
〈try to register the device driver 21a〉
〈unregister parallel device driver 13b〉
〈unregister the device 21c〉
〈VFS Struct 18d〉
〈write message 25b〉

Index

This is a list of identifiers used, and where they appear. Underlined entries
indicate the place of definition.
PPPROG H: 4b
cleanup module: 21b, 21c
DEVICE FILE NAME: 15a
device is open: 7a, 8a, 8b, 12
DEVICE MAJOR: 15a, 21a, 21c
DEVICE NAME: 6c, 10b, 11c, 21a, 21c
init module: 19, 21a
iobase: 20a, 20b, 20c
IOCTL PPPROG CHECK: 15a, 18a, 25a
IOCTL PPPROG SEND: 15a, 16b, 24c, 25a
KERNEL VERSION: 6a, 6b, 12, 13c, 14, 17, 18d, 19, 20b, 20c, 21a, 21b, 21c
lp: 20a, 20b, 20c
LptBase: 7c, 10a, 11c, 13a, 13c, 14, 17, 18b, 20a

27

main: 24a
MAX ASSERTIONS: 16c, 17
MODVERSIONS: 6a
ppprog attach: 9d, 10b
ppprog detach: 9e, 10b
ppprog device: 11b, 11c, 13a, 13b, 17, 18b
ppprog driver: 10b, 11a
ppprog exit: 21b
ppprog init: 19, 21b
ppprog ioctl: 16a, 18d
ppprog open: 8a, 18d
ppprog port: 11b, 11c
ppprog read: 13c, 18d
ppprog release: 12, 12, 18d
ppprog write: 14, 18d
ssize t: 13c, 14
SUCCESS: 6c, 8a, 16a, 19
USE PARPORT: 8c, 9a, 9b, 10a, 10b, 11b, 11c, 13a, 13b, 17, 18b

28

References

[1] Ori Pomerantz. Linux Kernel Module Programming Guide, 1999. Version
1.1.0.

[2] Peter Jay Salzman and Ori Pomerantz. Linux Kernel Module Pro-

gramming Guide, 2003. Version 2.4.0, (This document is available at
http://tldp.org/LDP/lkmpg/lkmpg.pdf).

[3] Tim Waugh. The Linux 2.4 Parallel Port Subsystem, 2000.

29

