Programming and Using a DSP-Based Parallel
Computer under Linux

Studienarbeit von Dirk Bachle

Technische Universitat Hamburg-Harburg
Technische Informatik VI (Verteilte Systeme)
Prof. Dr. Georg-Friedrich Mayer-Lindenberg

9. Dezember 2003

Contents

1

2

Introduction

The parallel computer ER2

2.1 Basic structure
2.2 ADSP-2181 modules . . .
2.3 SHARC modules

The device driver er2p

3.1 Why a device driver? . . .
3.2 Basic structure
3.3 Using the device driver . .

The ER2 library

4.1 General description
4.2 Basic structure
4.3 Example program

4.4 Loading and starting programs
4.4.1 DOS-IDE for the ADSP-2181
4.4.2 Developing assembler programs

4.4.3 Executing programs

4.5 Configuring and testing crossbar links

4.6 List of available functions

The SHARC library

5.1 General description
5.2 Example program

5.3 Additional runtime system (ARS)

5.3.1 Basic layout

5.3.2 Synchronizing processes within a SHARC cluster . . .
5.3.3 Using the ARS routines

5.4 List of available functions

The G21k utils

6.1 Compiling C programs for the SHARC

6.2 The archiver ar21k

6.3 Creating the Standard C and Math library

10
10
11
13
14
14
15
16
18
22

24
24
25
26
26
28
29
29

7 Example application: Cholesky factorization 34

7.1 Prerequisites Lo 34
7.2 'The parallel algorithm 36
7.3 Implementation on the SHARCs 39
7.3.1 Electrical problems 39

7.3.2 Arrangement on backplaneo 40

7.4 Runtime comparisonso 41

8 Conclusion 43

i

1 Introduction

While system configurations like COW (Cluster of Workstations) and multi
computer architectures like Beowulf gain more and more ground in the area of
parallel processing, the classic parallel computers still have their share. Con-
sisting of many tightly-coupled processing nodes that work in concert, these
highly parallel machines can solve large application problems and—if prop-
erly designed—are eligible to special purposes like digital signal processing
or 2D/3D imaging.

The ER2 (fig. 1) is a parallel computer developed at the department ‘Dis-
tributed Systems’ of the Technical University Hamburg-Harburg. This
MIMD machine is based on several types of Digital Signal Processors and
has a very flexible structure. Its network is built on a layer of 2181 modules
(see 2.2). This base layer can be extended by attaching appropriate add-on
boards like the SHARC modules, which are further described in 2.3.

One possible configuration of the ER2 uses the SHARC clusters for breaking
down a complex task, on top of the network of 2181 nodes. The latter connect
the fast serial links of the SHARCs via special crossbar switches, such that the
exchange of data or synchronization messages is possible. These connections
are preferably set up once and kept static during runtime. However, the
dynamic reconfiguration of crossbar links is also possible and a major feature.
It enriches the area of research for the ER2 with some interesting topics like
fault tolerance and reconfigurable networks.

Unfortunately, due to its heterogeneous structure the software support for
the ER2 is rather poor. So far, only the Fifth system (see [13, 14]) can be
used to interact with the single processing elements. Via a normal PC—
running the Fifth IDE—and a special interface called host adapter, data and
code can be loaded to the 2181 processors and the SHARCs. A small parallel
runtime system (PRS), developed in Fifth, provides a set of communication
primitives, the so called messages. This communication is solely based on
the processor the host adapter is attached to. The root processor can send
messages to other nodes, but not vice versa. No form of arbitrary message
passing is supported. Hence, the mentioned scenario with the SHARCs as
processing layer and the 2181 as connection layer appears to be an acceptable
alternative and is regarded as the ER2 standard configuration for the rest of
this document.

Another slight drawback is the fact that Fifth is a stack-oriented language.
Published algorithms however, are often presented in some form of pseudo-
code similar to high-level infix languages like C, Pascal or even Matlab. So,
the user would have to restructure the given algorithm instead of implement-
ing it in a straightforward manner.

The aim of this work is to provide a small Linuzr programming environment
that enables the user to write C programs for the single SHARC nodes on
the ER2, easy loading and executing of the generated code included. For the
general access of the parallel computer via the host adapter, a special device
driver is developed. It supports both kinds of existing interfaces—parallel
port and ISA bus—and establishes a doorway to the Fifth PRS. As already
stated, the SHARC clusters partly depend on the 2181 modules regarding the
configuration of the crossbar switches. Thus, additional support is provided
for this base layer. A library written in C offers various functions, ranging
from the detection of the network topology and read/write operations up
to a complete system for automatically configuring and testing an arbitrary
set of crossbar links. In the next step, an equivalent library for the SHARC
modules is implemented. Accompanied by several functions for exchanging
data with the 2181 processors, it can boot and detect the 2106x boards. It is
complemented by some SHARC assembler routines that build a small runtime
system for loading code and data, also enabling the restart of programs. For
programming the SHARCs in C, the G21k utils are selected. They stem
from an early version of the gcc—and relating programs—by Analog Devices,
which were made publicly available on the Internet. The G21k utils consist
of the C compiler g21k and several useful tools like a SHARC assembler and
linker. Several patches are applied to them and an own archiver is developed
from a copy of the linker sources. It is then used to create a small Standard
C and Math library for the compiler g21k, based on the assembler sources
from Analog Devices. The libraries offer a set of common functions like asin
and pow, supporting floating point arithmetics for the data types float and
double. The ease of programming that results from the achieved status quo
is shown by creating an example application. An unidirectional ring of eight
SHARC clusters computes the Cholesky factorization of a real matrix.

The structure of this text is as follows: section 2 introduces the reader to
the hardware, i.e. the basic layout of the ER2. Then, sections 3-5 outline
the development and usage of the necessary device driver and the supporting
C libraries. How to compile and link code for the SHARCs is explained in
section 6 where the G21k binutils and the C compiler g21k are described.
Finally, the algorithm and the implementation of the application example
are presented (sec. 7).

In the appendices, the reader finds an index of available functions for the
G21k Standard C libraries and a CD-ROM which serves as a backup for
all the data related to this work. Among source code, documentation and
examples it also contains the internal reports [3, 16, 6, 5, 4, 7], where the
latter three are Literate Programming documents. More information on this
technique and the used tool NOWEB can be found in [5].

2

2 The parallel computer ER2

2.1 Basic structure

The ER2 is a parallel computer built in a modular fashion. On each of its
16 backplanes one discovers 16 connectors for little plug-in processor boards,
which are designed around an ADSP-2181. If fully assembled and by the aid
of the SHARC modules the ER2 makes it up to a total of 512 processors (256
ADSP-2181, 256 SHARC-2106x).

Figure 1: The parallel computer ER2 (Source: T16, TUHH)

By inserting a processor board to the backplane it is directly connected to
its four neighbours in the north, west, south and east (see also fig. 10, p. 19).
Additionally, one can use the crossbar switches to establish links between
dedicated nodes. This configuration can be done during runtime.

Thus, a large variety of graphs can be mapped to the network topology of the
ER2. The DSPs offer a computing power of up to 12+16 GOPS, especially
for digital signal processing applications.

2.2 ADSP-2181 modules

The ADSP-2181 modules (fig. 2) are built around the ADSP-2181 (see [1]).
They also contain a crossbar switch (I-Cube 1Q160), controlled by an FPGA.

f.

ER2
144 Prozessorbusstecke

> - Modul

Javsmspieonisqoy o E
ITPOW - 243

sy sy mals 8
o i s sy sl s

vt

Figure 2: 2181 module

The ADSP-2181 is a 16-bit integer DSP with 16k words of internal memory,
for data and program memory each. It is based on a Harvard architecture
and offers separate data buses to Program Memory (PM) and Data Memory
(DM). In connection with the internal accumulator, the processor is capa-
ble of performing up to two data fetches, one multiply and one add opera-
tion in a single cycle. Hence, building scalar products—i.e. matrix-vector or
even matrix-matrix multiplications—is often its main task. This operation
is broadly used in the area of Digital Signal Processing, e.g. for digital filters.
At boot time, the ADSP-2181 is fed from the Flash-EPROM with a small
parallel runtime system (PRS) which was written in Fifth. It provides a basic
layer of routines for reading/writing from/to the memory of the single DSPs.
One of the connectors shown in figure 2 fits into the backplane of the ER2.
The other can be used to extend the hardware by attaching additional boards
like the SHARC modules.

2.3 SHARC modules

The SHARC processors are built around a Harvard architecture, too. In con-
trast to the ADSP-2181 they provide more internal memory—1MBit for the
21061 and 2MBit for the 21062—and support 40-bit floating-point operations
directly.

A very interesting feature of the ADSP-2106x series is the support for mul-
tiprocessing. Accessing a common address and data bus, each SHARC in an

embedded system gets a unique ID. This setup does not only include auto-
matic bus arbitration. The SHARCs can also access all internal memories
that are mapped to the common address space accordingly (see [2, 5-10]).
Thus, data can be distributed very quickly among the single processors. Ad-
ditionally, the 21062 offers six fast serial links that can be used for dedicated

remote connections.
The SHARC clusters for the ER2 contain two ADSP-21062 and two ADSP-

21061 each (see fig. 3).

23

AL
AT

Ao

LAl

e.ramamnmoagmd
| POV - JHYHS .

Figure 3: SHARC cluster

As is shown in fig. 4 they build a small multiprocessing system with an
external memory bank of 128k words to share.

The serial links L0, L3, L4, L5 of the SHARC #1 and L3, L4 of #2 are directly
connected to pins of the I-Cube chip on the 2181 board underneath. By
configuring the crossbar switch a path, i.e. a physical link, can be established
between remote processors. Unfortunately, these connections did not prove to
be as reliable as they should. Various experiments with example applications
showed that the ER2 is suffering from severe electrical problems which lead
to an unstable and unpredictable behaviour (see 7.3.1 on pp. 39).

#3 #4
ADSP21061 | | ADSP21061

only only
1MBit RAM 1MBit RAM
#1 H#H2
ADSP21062 ADSP21062
Serial links Serial links
LO-L5 LO-L5
\J

6Mbit external memory

Figure 4: Basic layout of a SHARC cluster

3 The device driver er2p

3.1 Why a device driver?

The connection between the ER2 and a PC is established via an interface—
also called host adapter. Triggered by special commands from an application
on the PC, it reads/writes data from/to the root processor of the ER2 via
the IDMA port (see fig. 5).

PC H Inlt_le(r)%ce $$ Mzellw?c}ry

Figure 5: Access to the memory of the root processor via the host adapter

At the moment, two different host adapters exist. One is an ISA bus card
that has to be inserted to the PC directly. The other host interface can
simply be attached to the parallel port connector of the computer.

Considering the functionality of the two interfaces, no differences exist be-

tween them. The parallel port interface is only much slower (150 KByte/s
max.) than the ISA card (750 KByte/s max.), resulting from the fact that
it can not handle full 16-bit words, but operates with 8 bit instead (see [3]).
It has to be noted that the ISA card interface operates together with the 2181
modules only. A write to a SHARC cluster via the Fifth PRS is immediately
followed by a reset of the ER2 if the ISA card is used.

Both devices are controlled via writing to and reading from IO ports with
inb and outb functions. Hence, programs in Linux that want to access the
devices, i.e. get permissions for the appropriate ports, normally need to be
run as root. This is, of course, somewhat awkward because every interested
party should be enabled to develop applications for the ER2 without giving
him the password of the superuser.

There exist several solutions for this problem, including workarounds like
setting the root execution bit or using a daemon.

The normal way—and definitely the best—is to write a device driver. Being
closely related to file handling (open, read, write ...) it does not only use
a well defined interface to the kernel but also provides a useful and portable
interface to applications. By hiding the necessary 1O port accesses within the
device driver one is able to write programs that will always work, regardless
of which interface is used at the moment. If a new host adapter is ever
developed, only the device driver has to be changed. All other source code
stays exactly the same.

3.2 Basic structure

Linux handles external devices by the help of the Virtual Filesystem Switch
(VFS). This is a part of the kernel that is, in short terms, responsible for
translating general system calls like a read into the equivalent sequence of
commands for the addressed device. This device could be a hard disk, a
scanner or an external zip drive.

The readily compiled device driver contains appropriate functions that can
handle requests like read or open. Additionally, a special struct is defined
that keeps pointers to these file operations. When the device driver is loaded
to the kernel, they are registered with the VFS and can then be used to
access the device.

For each type of peripheral device, a special device file is created with an
unique number—the so called major ID. On every access to a device file, the
VFS checks the major number and immediately knows which function it has
to call.

The device driver er2p supports both types of host adapters for the ER2. It
is organized in two layers (see fig. 6) where the lower layer 1 consists of basic

7

IO routines for each host interface.

Layer 2: VFES functions

Layer 1. Auxiliary functions

Figure 6: Layer structure of the device driver

In the following text and the source code of the driver, ‘PP’ is an abbreviation
for ‘Parallel Port’, while ‘IC’ is short for ‘ISA Card’. The auxiliary functions
ensure that both interface cards can be accessed on the same level, regarding
word size. Their main task is to translate the reads and writes of 16-bit
words or addresses to two 8-bit transfers for the parallel port host adapter.

The layer 2 on top implements the file operations as needed by the VFS. All
actions like reading a 16-bit data word or resetting the ER2 are triggered
by a special VFS function called ioctl (short for Input Output ConTroL).
It is normally used to transpose the device into another state, regarding the
transfer of data. For example, the driver of a modem at the serial port might
use an ioctl call to change the current baud rate. The ioctl routine can
handle an arbitrary number of subroutines, that are specified by an ID given
as parameter to the function.

The device driver er2p supports the following ioctl calls:

Command Description
I0CTL_ER2_RESET Resets the ER2
T0CTL_ER2_IRQ Generates TRQ2

IOCTL_ER2_WRITE_WORDS Writes 16-bit words
IOCTL_ER2_WRITE_ADDRESS | Sets 16-bit address
IOCTL_ER2_READ_WORDS Reads 16-bit words
IOCTL_ER2_SET_LENGTH Sets the number of words to read/write
IOCTL_ER2_SET_INTERFACE | Sets the used interface

The last ioctl subroutine specifies the adapter type—which can be either
PARALLEL_PORT or ISA_CARD—that should be used for the following accesses.
Each VFS file operation routine (layer 2) of the driver contains a switch

statement that executes the appropriate function from layer 1, depending on
the selected host interface.

Figure 7 shows how the request for a read of a 16-bit data word is translated
to the special auxiliary functions, depending on the selected adapter type.

pp_read_data()

Parallel port adapter

i oct | (READ_WORDS) . .
——— | Devicedriver

ic_read_data()

ISA port card

Figure 7: Control flow for a read operation

Since both interfaces are combined into one device driver, all IO ports have to
be requested at once. Unfortunately, ioctl calls can only be sent to already
opened device files. Thus, every time an open call reaches the device driver,
it tries to claim the port regions:

Interface Port region
ISA Card 0x320-0x32F
Parallel Port | 0x378-0x37A

They are released as soon as the device file is closed again.

3.3 Using the device driver

The device driver er2p is compiled as kernel driver module, which means
that it can be loaded and unloaded during runtime. For this, root access is
needed. Then, the module can be added to the kernel by the command:
modprobe er2p

If everything went fine and the module was properly inserted, it should ap-
pear in /proc/modules. This can be checked with either

cat /proc/modules
or
1smod

For removing the module again, one has to type:

rmmod er2p

As already mentioned, a device file with the proper major number is needed,
too. It can be created by the command

mknod /dev/er2p c¢ 219 0

if it does not already exist.
More information about the interna of the device driver er2p, its proper
installation and the VFS in general can be found in [5, 17].

4 The ER2 library

4.1 General description

Via the device driver, memory locations of the root processor can be read
or written. This enables the access to the Fifth PRS that is running on the
single ER2 nodes after startup.

The root processor emits small data packets, which are then distributed
around in the network. Single remote processors can be addressed but broad-
casts to all nodes—or just a predefined group—are also possible.

The ER2 library collects routines that encapsulate these so called messagesin
higher-level functions. Following the guidelines in [15], most of the available
PRS functions are supported, including

e network detection,
e memory access to remote processors and

e starting of programs on remote processors.

It hides the device driver accesses to single memory locations of the root
processor from the programmer, offering a more abstracted view on the ER2

(see fig. 8).

PC ER2 library | Single2181
Device driver Group of 2181

Figure 8: View on the ER2 via the library er2

10

Instead of only writing to the memory of the root processor, he can now
address all nodes in the network directly.

The prototypes of the functions were defined, trying to meet the following
requirements:

1. consistent naming of function parameters,
2. verbose function names and

3. support of error handling, where appropriate.

Additionally, all variables and functions for internal processing were declared
static. The user has to call special accessor functions for reading or changing
them. For example, two internal variables named errors and verbose exist
that control the output of error and info messages, respectively. Their state
can not be changed directly, the user has to call the function errors_off ()
in order to suppress the display of errors.

All together, the ER2 library can be seen as the instance of a class. It con-
tains private variables and data structures, representing the internal state of
the object, and offers accessors that can change this state. The underlying
concept of encapsulation was borrowed from OOP (Object-oriented program-
ming) and is also applied to the SHARC library in section 5 later on. The
resulting access control helps in defining what the client programmer can use
and separates the interface from the implementation. Anything that is not
public, can easily be changed without requiring modifications to client code
(see [8, pp. 261]).

4.2 Basic structure

The ER2 library can be roughly divided into two layers (see fig. 9). Layer
3 contains the routines for basic 1O via the device file, i.e. the device driver
er2p. None of them is available to the user, they are kept private. The upper
layer 4 offers the higher-level functions—as listed in section 4.6, starting on
page 22—to the programmer, enabling him to take actions like distributing
data or loading code to some processors.

Among the user functions, the message plays a very important role. These
already mentioned data packets, consist of a sequence of 16-bit data words,
specifying what kind of action should be triggered on which processor. The
lengths of the provided messages, i.e. the number of data words, can range
from 1 up to 66.

In order to send a message, its data words have to be written subsequently
into a destined location of the root processor’s memory. For each word an

11

Layer 4: Higher—level functions

Layer 3: IDMA access via driver

Figure 9: Layer structure of the ER2 library

interrupt is generated, the 2181 then reads the memory location and decides
what to do next, based on the contents of the new word (see [15, p. 5]).
The ER2 library uses these messages within higher-level functions like
broadcast_memory, which transfers code or data to a remote processor. In-
side the function, the appropriate message is constructed and then sent via
the device driver.

A lot of library functions require the user to specify the processor and/or the
destination address—beside saying which data to transfer. For giving the
necessary information to the library, the following paragraphs explain some
general concepts regarding the management of addresses and IDs throughout
the er2 functions.

The single boards can be distinguished by their physical address—a unique
number in the range 0-255. These physical IDs are used by the Fifth PRS
to route the message data packets through the network. While detecting
the network topology at the startup of the ER2, the library also initializes a
second array of logical addresses from 0 to (n-1), where n is the number of
nodes in the network. This is especially useful for loop constructions like

for (i = 0; i < get_number_of_nodes(); i++)
{
/* Any action(s) involving the processor
get_physical_address (i)
*/
}

where get_number_of_nodes returns the number of detected 2181 modules
and get_physical_address translates from logical to physical addresses.
While specifying an address in the 2181 memory, again the concept of log-
ical vs. physical addresses is used. The memory of the ADSP-2181 on an
ER2 module ranges from physical address 0x0000 up to physical address
Ox7FFF. It can be split into 24-bit program memory (PM) from physical ad-
dress 0x0000 to physical address 0x3FFF and 16-bit data memory (DM) from
physical address 0x4000 to physical address 0x7FFF.

12

Following the standard imposed by the ADSP DOS-IDE utilities—which are
further described in section 4.4.1—, logical addresses from 0x0000 to 0x3FFF
are used in both: program and data memory. This suits the definitions in
the architecture files (*.ach) best and means that logical addresses in PM
will stay the same when converted to physical addresses. Logical addresses
in DM are mapped by the library as follows:

Logical address | Physical address ‘
PM | 0x0000-0x3FFFF 0x0000-0x3FFF
DM | 0x0000-0x3FFFF 0x4000-0x7FFF

In order to distinguish between program and data memory a special data
type called memory_class is defined, which accepts the two values dat and
prog.

The following call of broadcast_memory transfers the first 4 integer words of
the array data to the single processor #0x34. Their destination is the logical
address 0x1000 in data memory (DM), which results in the physical address
0x5000:

broadcast_memory (SINGLE, 0x34, 0x1000, dat, data, 4);

Instead of talking to only a single processor, data broadcasts to a whole
group of nodes are also possible. An 2181 module can join a group by the
function join_group. It takes the physical address of the processor and
the group number—ranging from 0 to 63—as arguments. Unfortunately,
the Fifth PRS does not allow processors to join more than one group but
this is still sufficient for speeding up and simplifying certain data transfers,
e.g. loading the same program to several nodes.

The call

broadcast_memory (14, 0x1, 0x1000, dat, data, 4);
differs from the one above in the first two arguments. Data is now loaded
to all processors of the group #14 simultaneously. Since the special group

‘SINGLE’ is not given, the physical address, i.e. the second argument, is ne-
glected and can be set to an arbitrary value.

4.3 Example program

A minimal wrapper for programs that want to use the ER2 looks like this:

13

#include <er2gdef.h>
#include <er2.h>

int main(void)

¢ startup_er2(PARALLEL_PORT) ;
/* ... other actions ... */
shutdown_er2() ;
return(0) ;

}

First, the necessary headers are included. The file er2.h contains the pro-
totypes of all functions in the ER2 library. Some general defines—common
to the device driver and both libraries—are kept in er2gdef.h. It pro-
vides the definitions for the different host adapter types (PARALLEL_PORT
and ISA_CARD) and for the function return values OK and ERROR.

Please, regard that the directory of the include files and of the library itself
has to be known to the compiler. Assuming they are installed in their default
places at /usr/local/include/er2 and /usr/local/lib/er2, the options

-I/usr/local/include/er -L/usr/local/lib/er2

have to be added to the compiler call.

In startup_er?2 the device file er2p is opened. Then a special routine detects
the network and initializes the routing table and the arrays for the translation
between logical and physical processor addresses. Based on the function
argument, either the PARALLEL_PORT or the ISA_CARD host adapter is used
for this.

The section “other actions” may contain any access to the ER2 or another
arbitrary C function. For example, the function display_routing table
could be called. It loops through the internal routing table and outputs its
contents to stdout.

The function shutdown_er2 at the end has only one task: it closes the device
file again which results in releasing the claimed IO ports.

4.4 Loading and starting programs
4.4.1 DOS-IDE for the ADSP-2181
For the ADSP-2181 processors a small DOS-IDE by Analog Devices exists.

This set of tools for developing assembler and C programs contains:

14

e the assembler asm21,
e the linker 1d21,
e the C compiler g21 and

e several simulators for the 21xx series.

Due to the lack of appropriate Linux tools this environment—more exactly,
the ADDS-21xx-SW-PC Development Software, Release 5.1—is directly sup-
ported in the ER2 library. Generated programs can be loaded to ER2 nodes
and started with a single function call each.

All of the ADSP tools can be run in Dosemu, the DOS emulator of Linux,
without problems. Thus, the user still has only one operating system to
manage during development.

4.4.2 Developing assembler programs

This is the architecture file that can be used to create assembler programs
for the 2181 on the ER2:

.SYSTEM auto;

.ADSP2181;

.MMAPO;

. SEG/PM/RAM/ABS=0x0FD8/CODE/DATA int_pm[0x3024] ;
.SEG/DM/RAM/ABS=0x1000/DATA int_dpm[0x2FFF] ;
.ENDSYS;

If its name is er2.sys it can be packed to a *.ach file by the command:
bld21 er2.sys

The memory areas 0x0000—0x0FD7 in PM and 0x0000—0xOFFF in DM con-
tain routines of the Fifth PRS, so the architecture description leaves them
untouched. In the range 0xOFD8-0xOFFF (PM) the Interrupt Vector Table
(IVT) of a program is located, right before the executable itself starts at
address 0x1000.

A corresponding assembler program should look like this:

.MODULE/RAM/ABS=0x0FD8 serial_receive;
.VAR/DM/RAM rcv_flag;

.INIT rcv_flag: O;

.ENTRY init_port;

15

{set up interrupt table}
NOP; NOP; NOP; NOP;

NOP; NOP; NOP; NOP;

NOP; NOP; NOP; NOP;

NOP; NOP; NOP; NOP;

NOP; NOP; NOP; NOP;

NOP; NOP; NOP; NOP;

NOP; NOP; NOP; NOP;

NOP; NOP; NOP; NOP;

NOP; NOP; NOP; NOP;

JUMP RECVE; NOP; NOP; NOP;

init_port:
{main program, initializations}
AXO0 = 1;
DM(rcv_flag) = AXO;
IDLE;
END: RTS;

{interrupt routine}

RECVE: AXO = DM(rcv_flag);
AR = AXO AND 0x0001;
IF NE JUMP SEND_ACK;
RTI;

After some assembler directives for defining variables and the entry point of
the ‘main’ routine, the first 40 commands represent the IVT. A ‘NOP’ means:
“Do not overwrite the current entry in the IVT.”. The program—starting at
the label init_port—runs into an IDLE loop. Upon a triggered interrupt
from the serial port, the subroutine RECVE checks the flag rcv_flag. If it
is not equal to zero, an acknowledge is sent. Please, note that the required
routine SEND_ACK is not included in this listing.

The source file can be assembled by:

asm21 ser_rec
and then linked to an executable with the command:

1d21 ser_rec.obj -a er2 -e ser_rec.exe

4.4.3 Executing programs

The executables, output by the Analog Devices assembler asm21, consist of
simple ASCII text lines. Single sections tell which data or program code
should go to which memory location. For example, the small program

16

.MODULE LED_BLINK;
.VAR/DM/RAM/ABS=0x2000 dataflag;
.INIT dataflag: O;

.ENTRY start_blink;

start_blink: toggle £10;

CNTR = 1000;

DO loopl UNTIL CE;
loopl: NOP;

toggle £10;

CNTR = 1000;

DO loop2 UNTIL CE;
loop2: NOP;

toggle £10;

CNTR = 1000;

DO loop3 UNTIL CE;
loop3: NOP;

toggle £10;

RTS;
.ENDMOD

results in the executable file:

ITi
QPA
1000
02004F
3E7105
15003E
000000
02004F
3E7105
15007E
000000
02004F
3E7105
1500BE
000000
02004F
OAOOOF
#123010C65D4
@DA
2000
0000

17

#12300002000
IIo

Quickly, one discovers the simple structure of these files. They consist of
blocks—either for data or program memory—supplied with an address. The
program memory blocks contain ADSP-2181 instructions in hexadecimal for-
mat, whereas data memory blocks care about the initialization of variables.
The function read_program is able to read an ASCII executable and loads
it to the specified processor. Afterwards, it can be started by the routine
broadcast_start_program from the ER2 library.

The following program reads the executable toggle.exe and loads it to pro-
cessor #171 in the network. Afterwards, the process is started at address
0x1000 in program memory.

#include <er2gdef.h>
#include <er2.h>

int main(void)

{
startup_er2(PARALLEL_PORT) ;

read_program("toggle.exe", 0x0, 0x1);
broadcast_start_program(SINGLE, 171, 0x1000, OxFF);

/* ... other actions ... */
shutdown_er2();

return(0) ;

4.5 Configuring and testing crossbar links

The crossbar switches can be used to connect ports of two ADSP-2181 pro-
cessors e.g. for serial communication. These connections between two distant
modules can be viewed as edges of a communication graph—regardless of their
width in number of bits. For embedding this graph into the crossbar switch
structure of the ER2, an edge may have to cross several intermediate proces-
sors, where pass-through connections have to be defined. These subparts of
an edge are called links from now on.

A special message is provided, configuring a single link for a 3-bit wide serial
communication edge (see [15, p. 6]). Support for this link message is not
included in the current version of the ER2 library.

18

Instead, a different, more basic, approach is selected that enables the user to
switch 1-bit connection edges. Several of these can be combined to 3-bit serial
communication paths (or even 6-bit for the SHARCs) again. Additionally,
the single connections can be tested.

By inserting modules into an ER2 backplane, they are physically connected
to their neighbour’s pins as shown in figure 10, which was derived from [18].
The small hexadecimal numbers denote the accessible crossbar ports and
their antipodes in the four directions.

Ox1F

0x30 | +* | OXI1E

0x31

&
L8
£E
EES

j AL

oo

q-mfbﬁi

RRIRRRIIRIRRIIIIRRRIIRRRR

--nam

oo
SMEABroENoG

X
GRERIETREABPOENGRRBR2S

.
RRRRRRRRRRRRIRIRRIRRRIRRRIRIR

FRRRRIIIRIRIIIILIRIRIRLRR

TOP> 0PN OAON_—ORMOQBS o8I0
COB»OBNCAGN—ORMOR®P o8I0

RRIXRIIIIZIIIRIIRIIRILIRLL

SRERZE

OxI1F
0x20

0x30 | +* | OxIE

0x31

0x32
0x33
0x34
0x35
0x42
0x44
0x45
0x46
0x47
0x48
0x49
0x4A
0x4B
0x4C

Figure 10: Available pin connections

All information about the communication graph is stored in a linear list,
where each processor gets an entry, consisting of two additional linear lists—
one for links, the other for edges.

A link is simply a pair of port numbers:

struct link

{
/** First port of the crossbar connection */
int link_porta;
/**x Second port of the crossbar connection */
int link_portb;
/** Pointer to next entry */
struct link *next_link;

19

An edge connects a port of the actual processor, with a distant processor
conn_proc. For testing, the number of the distant port conn_port needs to
be known, too:

struct edge
{
/** The port of the actual processor that is connected with
another processor in the network */
int port;
/** The physical address of the connected processor */
int conn_proc;
/** The port of the connected processor */
int conn_port;
/** Pointer to next entry */
struct edge *next_edge;

};

Again, all these data structures are internal and not visible to the user. New
entries to the tree of configuration data have to be added by calling the two
functions insert_link and insert_edge.

If a single edge is specified as: “Let the port 0x0D of processor 0x45 be
connected to port 0x64 of processor 0x32.”, this also implies a connection
in the opposite direction. Crossbar switches work bidirectional, so for every
hardware path one gets two logical connections, i.e. each call of insert_edge
actually inserts two entries.

Once that the configuration of all processors is complete, the function
configure_er2 can be called. In a first pass it loads a special assembler
program to all nodes that are concerned. Then, the list of links is transferred
to each single 2181. Finally, the program is started in parallel on all boards.
It reads the list of crossbar connections and switches them automatically.
In a similar manner, the made connections are tested by the function
test_all_edges. Depending on the edge lists specified by the user, it loads
an assembler program to the processors and tests all hardware lines. Re-
turned are the number of errors, i.e. unsuccessful tests. More information
about the assembler programs can be found in [4].

So far, the user has to provide a function—or at least some kind of loop—
calling insert_link and insert_edge repeatedly for constructing the com-
munication graph. If the configuration is static, it is desirable to relieve the
user from the burden of manually setting up the data tree each time.

For this, the function read_configuration data was developed. It reads
a simple text file that contains the needed informations for building the
configuration tree.

20

The syntax for this file—given in BNF—is:
configuration: list_of_blocks

list_of_blocks: block
| block NL list_of_blocks

block: processor NL link_block NL edge_block

link_block: 0’
| number NL links

links: link
| 1ink NL links

edge_block: ’0’
| number NL edges

edges: edge
| edge NL edges

link: HexInt HexInt
edge: HexInt HexInt HexInt
HexInt: [0-F] [0-F]

processor:
number : [0-F]+

The terminal NL denotes a newline, so each entry has to stand on a single

line.

the call of

If the externally created file could be read successfully,
configure_er2 sets up the desired connections. The following basic wrap-
per program reads the configuration file test.cnf, configures the specified

crossbar connections and tests them automatically:

#include <er2gdef.h>
#include <er2.h>

int main(void)

{

21

verbose_on();

startup_er2(PARALLEL_PORT) ;

read_configuration_data("test.cnf");

configure_er2();
test_all_edges();

/* ... other actions ...

*/

free_configuration_list();

shutdown_er2();

return(0);

}

The function free_configuration_list should be called before or after
shutting down the ER2. It frees all memory for the link and edge entries

that were allocated during configuration.

4.6 List of available functions

At the end of this section, a list of all available functions for the ER2 library
is presented. The prototypes can be found in the header file er2.h or the
Literate Programming document [4], which also gives further insight to the

operation of the single routines.

Function Description

verbose_on Switches on the display of verbose mes-
sages

verbose_off Switches off the display of verbose mes-
sages

errors_on Switches on the display of error messages

errors_off Switches off the display of error messages

root_write_address

root_write_data

root_read_data

Sets current IDMA address for root pro-
cessor

Writes data to root processor via IDMA
bus

Reads data from root processor via IDMA
bus

continued on next page

22

continued from previous page

Function

Description

message
message_wfr

message _wir_x

Sends a message with no result

Sends a message and returns the 24-bit
result

Sends a message and returns the 48-bit
result

request_memory

broadcast_memory

Reads data from the memory of a remote
processor
Transfers data to the memory of a remote
processor

join_group

Sets the group ID for a node

display _routing table
get_neighbour

get_number_of_edges
get_number_of nodes

get_physical_address
get_logical_address

Displays the detected network topology
Returns the ID of the neighbour node in
the given direction

Returns the number of edges in the net-
work

Returns the number of nodes in the net-
work

Returns the physical address for a node
Returns the logical address for a node

read_program

read_program c

Reads an 2181 assembler executable to the
memory of a remote processor

Reads an 2181 C compiler executable to
the memory of a remote processor

root_start_program

broadcast_start_program

Starts a program on the root processor
Starts a program on a remote processor

insert_link
insert_edge

Adds a link to the configuration data
Adds an edge to the configuration data

free_configuration_list

Frees all memory, allocated for the config-
uration data

configure_er2

Sets up all specified crossbar connections
from the configuration data

read_configuration_data

Reads the configuration data from an ex-
ternal file

load_test_program

Loads the program for testing connections
to a remote processor

continued on next page

23

continued from previous page

Function Description

start_test_program | Starts the program for testing connections
on a remote processor

test_edge Tests a single connection between two re-
mote nodes

stop_test_program | Stops the program for testing connections
on a remote processor

test_all edges Automatically tests all specified connec-
tions of the configuration data

startup_er2 Automatically opens the device file, resets
the ER2 and detects the current network
topology

shutdown_er2 Closes the device file

5 The SHARC library

5.1 General description

Having gained control over the 2181 modules, the next logical step is to
provide support for the SHARCs. Figure 11 shows the layer structure of the
SHARC library er2sh.

Layer 6: Functionsof the ARS

Layer 5: Functions based on PRS

Figure 11: Layer structure of the SHARC library

The layer 6 is built by some special routines, supporting an extension to the
Fifth PRS that is described in section 5.3. At the bottom, layer 5 supports
the Fifth PRS and encapsulates various functions for loading data or starting
programs on the SHARC clusters.

Especially the boot sequence for the SHARCs is worth mentioning: After a
reset of the ER2 no 2181 module initially knows whether a SHARC cluster
is attached or not. As described in [16], two binary files have to be loaded
to each ER2 node. The file s21cde.dat contains a boot loader program for
the 2181, while shcde.dat contains the Fifth PRS routines for the SHARCs.

24

They are distributed in the network by a single broadcast each. This is
achieved by first building a special group WOR0OT, which contains all 2181
modules except the root processor. Upon the start of the boot loader, the
contents of shcde.dat are transferred to the SHARC cluster—whether it is
present or not—and the SHARCs are started. A small delay is added, to
ensure that the boot process has finished on all clusters. This whole process
is combined to the single function boot_sharcs.

If a cluster is attached it sets the bit #8 of the variable MASTER, located at
0x222 in the data memory of the 2181. The routine detect_sharcs checks
this variable on each ER2 node and enters all booted SHARC clusters into
the ID tables of the library er2sh. Again, two internal tables and a set
of accessor functions enable the translation between physical addresses and
logical addresses.

In contrast to the 2181 modules, the SHARC clusters do not have an own
unique number that can be used for addressing the single boards. Thus, the
ID of the underlying ER2 node is used instead.

The following call of write_to_sharc transfers the program word
0x0A3E00000000 (= ReTurn from Subroutine) to the single processor #0x25:

write_to_sharc (SINGLE, 0x25, 0x2, 0x20004, 0x0A3E, 0x0000, 0x0000);

According to the structure of the equivalent message in [16, p. 2] the third
argument specifies the address code. The SHARC address codes range from
1-7, where 1-4 are the internal memories of the single 2106x. Codes 6 and 7
specify the external RAM, starting at address 0x00400000.

The next argument gives the destination address, within the selected address
code range. Here, the data is written to the physical address 0x20004 of
SHARC #:2.

5.2 Example program

A minimal wrapper for programs that want to use the SHARC library er2sh
looks like this:

#include <er2gdef.h>
#include <er2.h>
#include <er2sh.h>

int main(void)

{
startup_er2(PARALLEL_PORT) ;
boot_sharcs();

25

detect_sharcs();
/* ... other actions ... */
shutdown_er2() ;

return(0);

}

After the startup of the ER2, the function boot_sharcs loads the files
21cde.dat and shcde.dat to all nodes and starts the SHARC boot loader
as described in [16]. Then, the routine detect_sharcs detects all booted
SHARC clusters.

In “other actions” any routine for the ER2 or from the SHARC library er2sh
can be called, except the ARS routines which own the prefix “ars_”.

5.3 Additional runtime system (ARS)

5.3.1 Basic layout

A dump of the SHARC IVT shows that it got completely overwritten by the
routines of the Fifth PRS—i.e. the contents of shcde.dat—, up to address
0x200FD (see also [7, pp. 22].

A simple load of an executable, created by the SHARC C compiler g21k
would destroy the routines that are used to communicate with the 2181
module below. The address space 0x20000-0x201FF is used for the interrupt
vector table and some basic tasks, e.g. setting up the processor and the C
runtime environment. In the worst case, programs could not even be started
once they are loaded.

Hence, a few additional routines—called ARS (Additional Runtime System)
from now on—were developed, holding the conditions:

1. No interrupts get overwritten or redirected, except the reset vector. So
the C programs that are to be executed can use them as they like.

2. All interrupt vector tables (IVT) and internal memories of the single
SHARCs are unoccupied, except a small area from 0x20100-0x20300.

3. If they finished, programs can be restarted without a reset of the ER2.
This would mean to reboot all SHARCs and load the code again, which
should be avoided.

26

if mem oc==

while
menl oc==0

on exit

Figure 12: Basic loop for the ARS

4. While waiting for the next (or first) start of a program, SHARC #4
of the cluster is also responsible for loading new code and data to the
single processors.

5. Loading data and starting processes per ‘broadcast’ is possible, i.e. with
a single call all four SHARCs in a cluster—or a nonempty subset—can
be supplied with a new program.

Like in the original Fifth PRS, complemented by the boot code shcde.dat,
the single processors each run in a small loop (see fig. 12). If a special
memory location gets written, they jump to the specified start address and
execute the loaded program. After the C program is finished, the loop of the
Additional Runtime System is entered again.

Although all SHARCs have direct access to the 2181 memory via IDMA in
principle, only #4 on each cluster is responsible for loading data and finally
starting the single processes. Otherwise, there would have to be some sort of
synchronization between the SHARCs and the 2181. Additionally, the total
time for transmitting all data to a cluster could not be reduced this way.
The single C programs can be different and may run independently, but they
are started at the same time. Since #4 is responsible for the general control
flow, it also sets up the common ‘go’ signal.

Within the ARS, no direct routines are provided for signaling to the user
that a single process has finished. If necessary, this can be achieved by a
special result word that is written to the memory of the 2181. It is further
assumed that if several processes want to output their results, some sort
of synchronization—preferably using the process synchronization functions,
described in [7] and 5.3.2—takes place within the C programs itself.

Some basic functions were written in SHARC assembler and are made avail-
able in C via the G21k ARS library (see [6]). Especially assembler programs
might need a more direct access to these routines, so the following table lists
all addresses occupied by the ARS:

27

Address Description

0x20100 Sharc ID

0x20101 “1” = Program is running,
“0” = Waiting for next start
0x20102-0x20105 | Reserved for token passing
0x20106 Reserved for ARS barrier synchronization
0x20107—0x2010F | Reserved for future use
0x20110-0x20116 | Function idma _read
0x20117-0x2011B | Function idma write
0x2011C-0x20123 | Function ars_get_id
0x20122-0x%2012C | Function ars_signal
0x2013D-0x20157 | Function ars_wait
0x20158-0x2017F | Function ars_barrier
0x20180-0%x20300 | ARS loop

5.3.2 Synchronizing processes within a SHARC cluster

The ARS functions idma_read and idma_write can be used to read param-
eters or return results to the 2181 modules. They access the 16-bit IDMA
port of the DSP as a gateway to all internal memory locations. Some address
lines of the SHARC cluster are used as control signals and every 2106x is able
to use the IDMA port. Unfortunately, this parallel port can not be shared,
so the user has to ensure that no two SHARCs try to claim it at the same
time.

In general, the possibility to synchronize processes on a cluster can be re-
garded as a very helpful feature. Thus, a few ARS functions were developed
that fulfill this task. The pair ars_signal and ars_wait can be used to syn-
chronize two different SHARCs on a cluster. One SHARC, the sender, signals
a request to the receiver. Once, the receiver enters his matching ars wait
function it detects the request and sends an acknowledge. Both functions
block the execution of each program until the acknowledge is exchanged.

In a similar way the routine ars_barrier can be called and synchronizes all
four SHARCs on a cluster. Since separate memory locations are used for
the internal synchronization protocols, different calls to signal/wait may
overlap in respect to the time axis: If a SHARC sends a signal to #3, it can
meanwhile receive a signal from #1.

Information about the internal structure of the ARS synchronization func-
tions can be found in [7, pp. 30]. Several of the examples on the ER2 CD
(see Appendix B) demonstrate their usage.

28

5.3.3 Using the ARS routines

A minimal wrapper for programs that want to use the ARS routines from
the SHARC library looks like this:

#include <er2gdef.h>
#include <er2.h>
#include <er2sh.h>

int main(void)

{
startup_er2(PARALLEL_PORT) ;
boot_ars();

/* ... other actions ... */
shutdown_er2() ;

return(0) ;

}

The function boot_ars first calls the routines boot_sharcs and
detect_sharcs. Additionally, every 2181 module that has a detected
SHARC cluster attached, joins the predefined group ALL_CLUSTERS. Then,
the ARS is installed and started.

In “other actions” any routine from the ER2 library or an ARS function,
starting with “ars_”, may be called. Please, note that the plain Fifth PRS
functions for the SHARCs do not work anymore. At this point the control
flow is already transferred to the ARS loops on the single clusters, so the
Fifth PRS does not listen to any requests.

5.4 List of available functions

At the end of this section, a list of all available functions for the SHARC
library er2sh is presented. The prototypes can be found in the header file
er2sh.h. The Literate Programming document [6] explains the design of the
ARS and its single functions in greater detail.

Function Description

boot_sharcs Tries to boot the SHARC clusters
detect_sharcs | Detects for which nodes the SHARC boot
was successful

continued on next page

29

continued from previous page

Function

Description

get_number_of_clusters
get_physical_cluster_address

get_logical_cluster_address

Returns the number of detected SHARC
clusters

Returns the physical address of the
SHARC cluster

Returns the logical address of the SHARC
cluster

write_to_sharc
read_from_sharc
load_sharc_hex_data

start_sharc_program

Writes a single 48-bit word to a SHARC
Reads a single 48-bit word from a SHARC
Loads a file with hexadecimal data to a
SHARC

Starts a loaded program on a SHARC

boot_ars
ars_broadcast_memory

ars_load_program
ars_start_cluster

Installs and boots the ARS

Transfers memory to a remote processor
via ARS

Loads an executable to a cluster via ARS

Starts a loaded program on a cluster via
ARS

6 The G21k utils

6.1 Compiling C programs for the SHARC

The G21k C compiler stems from an early version of the gcc. Adapted to
the 2106x processor series by Analog Devices, its source code is now publicly
available on the Internet. Together with some binary tools, the so called
binutils, the whole G21k package provides:

e an assembler (asm21k),
e a linker (1d21k),
e a C compiler (g21k) and

e a tool for dumping 21k COFF executables (cdump21k).

The development cycle for executables follows the usual paths as depicted
by figure 13.

The C compiler, i.e. the linker 1d21k, supports several processor types and
needs to know certain details about the architecture of the machine it gen-
erates code for. The memory layout for the current processor is defined in a

30

Assembler files
Assembler
asn21k

\i

C compiler i i
921k Object files

ink
ey

Y \i

Figure 13: Program development with the G21k utils

Linker Description File (LDF) that is given as argument to the linker call.
Two development scenarios are possible in general:

1. Only the Fifth PRS is used to load data and start programs. Then, the

executables have to be developed in Assembler only. The architecture
file should exclude the Fifth PRS section by defining a segment

.segment/ram/begin=0x00020000 /end=0x000200ff /pm seg_rth;

that is not used within the program. The user is free to define additional
segments for his code and data. No restrictions are lying upon the usage
of memory block #1 as for scenario 2.

. C programs are to be developed with the compiler g21k. Loading and
starting the executables requires that the ARS is used, so the segment

.segment/ram/begin=0x00020100 /end=0x000202ff /pm seg_ars;

needs to be defined in the LDF. It reserves the memory space for the
ARS routines. The user has to be aware of some restrictions that are
put on the C Stack and Heap as described at the end of section 6.3.

Complete architecture files (LDFs) can be found in the ‘examples’ on the
ER2 CD (see Appendix B). Together with the accompanying source code
and the Makefiles they provide a starting point for new applications.

31

6.2 The archiver ar21k

A small problem was left out of the discussion so far. The G21k utils do not
include a Standard C library (1ibc.a) which is needed by the compiler—at
least for basic functions like exit. Even worse, an appropriate archiver for
creating the required file is also missing.

Based on the source code for the linker 1d21k a simple librarian utility, named
ar21k, was developed. Its syntax is:

ar21k [-h] -o archive filel.obj file2.obj ...

In the first pass, the program reads each object file and tries to detect the
symbol table for each contained section. If a symbol directory was found,
all labels—Ilike entry points, functions, variables—that are supposed to be
global are stored. This is done in process_symbol_table (syms.c) where
global symbols are recognized by their special type C_EXT and then added
to the list of string entries for the current file. During this whole process,
additional information—Ilike the size of the single object files—is collected.
In the second pass, the archive header is written to the new file. It contains
some general info about the library and the list of symbols that are made
available by the archive. For each object file, a special header is constructed,
followed by a dump of the file itself (fig. 14).

Archive header
Symbol table
String table

Object file 1 header

Object file 1

Object file 2 header

Object file 2

L]
L]
L]

Figure 14: General structure of an archive file

32

6.3

Creating the Standard C and Math library

The archiver ar21k was used to create a Standard C library 1libc.a and a
Math library libm.a, based on the assembler sources from the VisualDSP

IDE.

Several ‘patches’ to the assembler and C sources had to be applied

for this. For their documentation in the rest of this section the following
abbreviations are introduced:

Macro | Expanded path

ASM er2cd/sharc/g21k-binutils-PL4/asm
LINK er2cd/sharc/g21k-binutils-PL4/1ink
INC er2cd/sharc/g21k-binutils-PL4/include

LIBC er2cd/sharc/libs/libc
LIB060 | er2cd/sharc/libs/1ib060

They can be regarded as macro defines that expand to the full path specifi-
cation wherever they are used.

1.

2.

All C++ style comments “//” had to be replaced by normal C comments.

Several labels contained a ‘.’ within their name, especially at the end
of a routine (example: ._abs.end). The dots were replaced by under-
scores.

. The three macros write_instr_and_call, write_first_instr and

write_second_and call (defined in LIBC/irptl.h) were expanded in
the ASM files that used them, because asm21k does not support define
macros longer than one line or with parameters.

A lot of global symbols had a name longer than 8 characters and would not be
exported by the original version of the assembler asm21k. So, the maximum
length for symbols was increased from 8 to 64 by:

This

changing SYMNMLEN in INC/a_out.h,
changing MAX_SYMBOL_NAME_SIZE in ASM/symbol.h and

adding a dummy string named x_dummy_name in INC/auxent.h to the
union auxent, since it needs to have exactly the same size as the struct
syment from INC/syms.h.

means that object files and archives—created by 1d21k and ar2ik,

respectively—are incompatible to other linkers, even if they use the COFF
format too.
The Heap and Stack spaces also underly certain restrictions:

33

1. The Stack may reside in DM only.

2. Only one Heap is supported at the moment.

The values for initializing the Heap and Stack are exported via a temporary
object file that is created during the linking phase (LINK/create_object.c).
It contains the symbols

1df_stack_space
ldf_stack_length
1df_heap_space
1df_heap_length
1df_heap_type.

They are used in LIBC/set_env.asm to set the variables

___lib_stack_space
___lib_stack_length
_—_lib_heap_descriptions

to their initial values.

Since the Stack may reside in DM only, the mode for memory block #1 is set
to 32-bit—instead of the 40-bit mode used for the Fifth PRS. Otherwise the
function calls in C programs would never return because the 40-bit mode dis-
turbs the stack management. The appropriate setting of the SYSCON register
is done in LIB060/060_proc.asm.

Together with a collection of ARS routines (1ibars.a) the created libraries
can be used by the G21k C compiler or linker. So, if a function like exp is
used within the C program, the option “~1m” should be added to the call of
g21k.

More information about the required C headers and the syntax of single
functions is available in [6].

7 Example application: Cholesky factoriza-
tion

7.1 Prerequisites

The Cholesky factorization of a matrix A € R"*" is the decomposition to

A=GGT

34

where G € R™" is referred to as the Cholesky triangle. As proven in [9,
p. 143], this factorization exists if A is symmetric positive definite, i.e.

Qij = Qj;
and
Az >0 V zeR"\{0}.

Analogous to LU decomposition, the Cholesky factorization is one of the basic
algorithms for scientific numeric computing. It is used in a wide range of
applications and gains its importance from the fact that a lot of problems—
and therefore the describing matrices—are symmetric by nature.

For example, in [19] the factorization is used to compute the inverse of a
matrix within every step of the Karmarkar algorithm. This is an algorithm
for solving large scale linear programming (LP) problems, which are often
encountered in communication, transportation industries and military oper-
ations. The number of variables for typical problems like tele-traffic routing
runs high, usually well-above a million with the number of constraints ex-
ceeding a hundred thousand:

Q
Minimize Y M,Y,,

q=1

J
subject to Zth =
j=1
Z thzh

0.0<<Zj < UBJk, where

M, : incremental link cost in terms of § per carried load on link ¢
Y, : maximum carried load on link ¢
Zjhk : carried load during period h, through path j of node-pair k
G’Z : total carried load between node-pair k during period h
P]'.II? : “1” if link ¢ is on path j of node-pair k& during period h, “0” else
UB?,C : upper bound value on Z]’-Zk

Following, a few general uses: the Cholesky factorization of a matrix A can
speed up solving the linear equation

35

Az =GGTz =b

for several different right hand sides b;. First, forward substitution is applied
to Gy = b where y = GTz. Then, the latter equation is solved by backward
substitution.

Another use is the symmetric-definite generalized eigenproblem

Ax = \Bzx; A,B e R

for the quite common case that B is not only symmetric like A, but also
positive definite. Then, as shown in [9, pp. 463] and [11, pp. 307] the Cholesky
factorization helps in reducing the problem.

Third, as hinted at in [10, p. 225] one can find out if a symmetric matrix A is
positive definite by applying a Cholesky algorithm to it, instead of computing
all ezgenvalues. If the factorization finishes with strictly positive square roots,
the matrix is in fact positive definite.

7.2 The parallel algorithm

The following descriptions and their notation refer to 4.2.4 and 6.3.1 in [9,
pp. 143, pp. 300] where a parallel algorithm for the Cholesky factorization is
presented.
Starting with

A=GG"

the jth column can be expressed as

A7) =) G, k)G, k)

k=1

while using common Matlab notation. A(7,j) equals the element a;; of the
matrix A. The “” is used to specify a range, so A(1:3,5) is a column vector
built from the first three elements in column 5 of matrix A. A single “” is
an abbreviation for the range “1:n”.

Drawing out the case k = j of the sum and using the fact that G is lower
triangular yields

j—1

G(j,)G, §) = A(Gm, j) = > GG, k)G(m, k) = v(Gin). (1)

k=1

36

Since obviously G(j, j) = v/v(j), the jth column of the Cholesky matrix can
be computed by

G(jm,) = .)
v(4)

The basic idea of the parallel algorithm is to distribute the computation
of the n columns evenly among the p processors in a ring. Each single
processor i € {1..p} is responsible for a maximum of L., = [n/p] columns.
Receiving the needed column vectors with £ < p from the left, it sums them
up in a local array according to (1). Then, the scaling from (2) is applied
and the new Cholesky column is passed on to the right neighbours.
The following C code for the node p assumes that the column vectors

Gy - - O (L-1)p

are stored in the local array aloc, where L is the number of G-columns to be
produced. This kind of ‘folded’ assignment provides a better load balancing.
The integer n is set to the rank of the matrix A, while right keeps the index
of the right neighbour in the ring. The index of the last column that ‘right’
has to compute is stored in rfin. The functions send_column_to_right and
receive_column from left send and receive the current G-column in the
array gloc, respectively. For the decision whether to pass a column on or
not, it is important to know which processor generated it. Basically, this
can be computed since the algorithm is known but it seems easier to ‘mark’
the sent columns with the local ID. The function set_gloc_id appends an
appropriate integer value to the array gloc before sending it. This processor
index can be read out with get_gloc_id again. Finally, the routine col
returns the index of the local column in the total matrix A.

int j = 0; /* Next column to receive */
int q = 0 /* Next column to compute */
int i, k, r; /* Counters */

float ftemp; /* Stores sqrt(A(j,q)) */

while (q < L)
{
if (j == col(q))
{
/* Form new G-column G(j:n,j) */
ftemp = sqrtf(aloc[j*L+ql);
for (i = j; i < n; i++)

37

{
aloc[i*L+q] /= ftemp;
gloc[i] = aloc[i*L+q];
}
if (j < (n-1))
{
/* Mark column with ID */
set_gloc_id(mu) ;
/* Send new column */
send_column_to_right () ;
}

jH+;

/* Update local columns */
for (k = (g+1); k < L; k++)
{
r = col(k);
for (i = r; 1 < n; i++)
aloc[i*L+k] -= aloc[r*L+ql*aloc[i*L+q];
}
q++;
}
else
{
/* Receive new column */
receive_column_from_left();
if ((right !'= get_gloc_id()) && (j < rfin))
{
/* Send column */
send_column_to_right();

}

/* Update local columns */
for (k = q; k < L; k++)
{
r = col(k);
for (i = r; i < n; i++)
aloc[i*L+k] -= gloc[r]*gloc[il;
}

jH+;

b

38

7.3 Implementation on the SHARCs
7.3.1 Electrical problems

Originally, it was planned to embed the ring of processors on the ER2 as
sketched in the introduction: Computations are done on the SHARCs which
are coupled by dedicated serial link connections via the 2181 modules and
their crossbar switches.

However, running the first examples showed that the ER2 suffers from severe
electrical problems. They result in an unstable and unpredictable behaviour,
e.g. several restarts may be necessary to get a program to run.

As a pre-stage to the Cholesky program a special test was developed and car-
ried out. Two SHARC clusters, one as sender the other as receiver, transfer
a single column of 512 words. This transfer is done via their fast serial links
that are connected by the crossbar switches of the 2181 modules below. Both
modules are direct neighbours on the backplane, so the lengths of the single
data lines are the minimum of what can be achieved. Additionally, a small
program called probe.exe was developed for the ADSP-2181. It can probe
single crossbar ports for their state (HIGH or LOW) and also apply a signal to
a dedicated line (see directory probe in the ‘examples’).

For each of the six test configurations that follow, the program was executed
50 times, trying to transfer data from one SHARC to the other.

Test A : Link fully configured, edges tested in both directions.

Test B : Link fully configured, edges not tested at all.

Test C : Link fully configured, edges tested in one direction
(from sender to receiver).

Test D : Link fully configured, edges tested in one direction, ACK
tested from receiver to sender, all other lines from sender to
receiver.

Test E : ACK set to HIGH for the sender.
Test F : ACK set to LOW for the sender.

The following table shows the results:

Test | Success | Faulty | No receive | No send/receive
A 38 1 11 1
B 2 0 48 0
C 25 1 24 1
D 37 2 11 2
E 46 2 4 0
F 0 0 0 50

39

The column ‘Faulty’ gives the number of successful but faulty transfers,
i.e. all data was sent and received but a single nibble was either gobbled or
wrongly inserted, preferably while transmitting the first 32-bit word.

Very interesting is the fact that there are no result levels in between. Either
all words are received, or none.

The ‘trigger’ function of the program probe.exe was used to additionally
check the lines of the SHARC links without connecting them at all. It verified
that all data lines DO-D3 and the CLK of the sender are working and driving
the used crossbar ports 0x6E-0x72. The ACK from the receiver keeps the port
0x7F at high state like it should—signaling that it is ready to receive data.
The tests show that crossbar switches provide no reliable connection between
two remote SHARC clusters. The problem does not seem to be connected to
the configuration of the link ports and buffers. Neither do the setup or the
testing of the crossbar switches have a negative influence on the following
transmission. The mentioned fact that either all data words are received or
nothing, might hint at a problem with the bidirectional crossbar switches.
Perhaps they decide to drive some lines—probably the ACK—the ‘wrong way’
under certain conditions. How these conditions look like, should be further
investigated.

Based on the test results, no configuration of crossbars is involved in the
example program. Instead, the necessary serial lines are established by short
flat-band cables that are attached to the external connectors for link #1 on
the SHARCs #1 and #2, respectively.

7.3.2 Arrangement on backplane

Figure 15(a) documents the arrangement of the single SHARC clusters on
the used ER2 backplane for the example program ring8_cholesky. The ‘A’
stands for the host adapter, the clusters 0-3 build the back row and 4-7 the
front row.

They are directly connected to an unidirectional ring by flat-band cables. The
counter-clockwise direction of data flow, i.e. the direction in which computed
columns are passed on, is indicated by the arrows.

Within a cluster at the back row, the columns from the previous neighbour
are received by SHARC #2. Then, the data is sent to #4, #3 and finally to
#1 that passes the columns to the nezt neighbour in the ring of clusters (see
fig. 15(b)). At the front row, this direction is reversed.

Since only #1 and #2 are equipped with serial links (SL), the other ‘vir-
tual links’ are replaced by direct memory transfers (MT) to the destination
SHARC.

40

,,,,,,,,,,,,,,,,,, MT

L L L LA] #3 = #4

H 3 H2 H1 Ho~ MT AMT
N4 Hs He H 7 | Y

T T <Stm #2 |a>b
(a) On the backplane, top view (b) On a SHARC cluster, back row

Figure 15: Direction of data flow

7.4 Runtime comparisons

The program was run on several PCs and the ER2 with the matrix dimension

n varying from 75-200. The used computers and architectures were:

PC1 : Pentium MMX, 200MHz, 64MB RAM, SuSE Linux 8.0,
Matrix Template Library (MTL), no compiler optimization
switches

PC2 : AMD KG6-III, 400MHz, 256 MB RAM, SuSE Linux 9.0,
Matrix Template Library (MTL), no compiler optimization
switches

PC3 : Athlon XP 2500+ (Barton), 1.83GHz, 1GB RAM,
SuSE Linux 9.0, Matrix Template Library (MTL), used g++
switches: -03 -march=athlon-xp

4C : ER2, unidirectional ring of 4 SHARC clusters = 16 proces-
sors

8C : ER2, unidirectional ring of 8 SHARC clusters = 32 proces-
Sors

The times CT (computation time) and TT (total time, including transfer of
data and computation) are given in seconds. S is the achieved speedup,

relative to PC1.

n | Conf. CT TT S

75| PC1 | 0.279704 1.0

4C 0.034049 | 15.972000 | 8.2
continued on next page

41

continued from previous page
n | Conf. CT TT S
8C 0.030853 | 16.087000 9.1
PC2 | 0.095601 2.9
PC3 | 0.000247 1132.4
100 | PC1 | 0.687065 1.0
4C 0.056327 | 28.273600 12.2
8C 0.048862 | 28.392400 14.1
PC2 | 0.223540 3.1
PC3 | 0.000514 1336.7
125 | PC1 | 1.296860 1.0
4C 0.080189 | 44.186500 16.2
8C 0.059463 | 44.165600 21.8
PC2 | 0.436092 3.0
PC3 | 0.000939 1381.1
150 | PC1 | 2.373250 1.0
4C 0.161830 | 86.197600 14.7
8C 0.087019 | 63.488700 27.3
PC2 | 0.756340 3.1
PC3 | 0.001545 1536.1
175 | PC1 | 3.903350 1.0
8C 0.121883 | 86.287100 32.0
PC2 | 1.208131 3.2
PC3 | 0.002390 1633.2
200 | PC1 | 6.148070 1.0
8C 0.160046 | 112.635000 38.4
PC2 | 1.798086 3.4
PC3 | 0.003805 1615.8

The Cholesky ring with four SHARC clusters (4C) could only be tested up
to the matrix dimension n = 150. For higher values the electrical problems
prevented the program from finishing successfully.

Figure 16 shows the speedups of the single test configurations against the
slowest competitor PC1. Regard, that PC3 (Athlon XP, 1.8GHz) is not
displayed because it outdoes all other machines by far and would distort the
graphic too much.

Compared to the older Pentium and AMD processors, the ER2 is able to
keep pace with their performance. But in relation to newer PCs, the ER2 is
definitely not state of the art anymore, regarding its computational power.

Even worse are the long times needed for data transfer from and to the
SHARC:s via the host adapter.

42

Speedup S

80 100 120 140 160 180 200
Matrix dimension n

Figure 16: Speedups, relative to PC1

8 Conclusion

In this work a set of tools and utilities has been presented that should give
rise to further development and usage of the ER2. A Linux device driver
and two supporting C libraries have been developed. The Parallel Runtime
System of the 2181 modules got complemented by a set of routines, the so
called Additional Runtime System. A C compiler, assembler and linker for
the SHARCs have been adapted to the ER2 and an own archiver utility was
added. It was used to create a Standard C and Math library for the compiler
g21k.

All together, a layered software structure-depicted in figure 17—is now of-
fered to the user.

It enables working with the ER2 by programming in the high-level language
C and lends itself to improvements like:

e Speeding up data transfers between the ER2 and the host PC by adding
support for the SHARC-PCI interface, presented in [12].

e Integrating the tool cnct, which was developed in [20] for embedding
graphs to the crossbar network of the ER2 automatically.

43

asnelk, | d21k, g21k, ar21k | Gfitks
Layer 6: Functions of the ARS
SHARC
library
Layer 5: Functions based on PRS
Layer 4. Higher-level functions
ER2
library
Layer 3: IDMA access via driver
Layer 2: VFS functions
> Device
driver
Layer 1: Auxiliary functions

1 Host adapter connected to ER2 |

,,,,,,,,,,,,,,,,,,,,,,,

Figure 17: Resulting software layers

e Providing a higher-level group management, where ER2 nodes may
belong to several groups simultaneously.

Additionally, some features for the G21k utils are still missing:

e Adding the insertion and removal of object files to the archiver ar21k.
e Supporting more than one Heap in the C Runtime environment.

e Restructuring the mechanism for passing the Heap and Stack parame-
ters from the Linker Description Files to the linker.

e Adding routines to the ARS library libars.a, for transferring double
values from the SHARCs to the host PC and vice versa.

While the accompanying examples demonstrate that applications for the ER2
can be built quite easily now, the tests in section 7.3.1 and the runtime results
manifest the weaknesses of this parallel computer. Thus, its near future—
regarding the range of application—remains unclear.

Reducing the amount of data going in and out, by picking appropriate prob-
lems and algorithms, appears to be feasible. Another plan would be to con-
centrate on network reconfiguration issues or research in the area of packet

44

routing and message passing, respectively. However, all of these options re-
quire to get a grip on the electrical problems and intricacies of the ER2 as
soon as possible.

45

46

References

1]
2]

3]

[10]

[11]

[12]

[13]

[14]

[15]

Analog Devices. ADSP-2100 Family User’s Manual, third edition, 1995.

Analog Devices. ADSP-2106x Family User’s Manual, third edition,
1999.

Dirk Bachle. Ermittlung der Datentransferraten fir den alten und neuen
Host-Adapter des ER2, 2000. Internal report.

Dirk Bachle. An ER2 Library in C. A Collection of Functions for Using
and Configuring the FR2, 2003. Internal report.

Dirk Bachle. A Linuz Device Driver for the Parallel Port and the ISA
Card Host Interface of the ER2, 2003. Internal report.

Dirk Bachle. Reference to the Standard C, Math and ARS Library for
the SHARC Compiler g21k, 2003. Internal report.

Dirk Bachle. A SHARC Library in C. Functions for Accessing the
SHARC Modules on the ER2, 2003. Internal report.

Bruce Eckel. Thinking in Java. Prentice-Hall, second edition, 2000.

Gene H. Golub and Charles F. van Loan. Matriz Computations. Johns
Hopkins University Press, third edition, 1996.

Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms.
SIAM, Philadelphia, 1996.

Wolfgang Mackens and Heinrich VoB8. Mathematik I fiir Studierende der
Ingenieurwissenschaften. HECO, Alsdorf, 1993.

Meder Mamutoff. Softwarearchitecture for Transparent Integration of
PC-Periphery for a Parallel Computer System via a Fast Serial Inter-
face, 2002. Studienarbeit.

Georg-Friedrich Mayer-Lindenberg. Das Fifth-Programmauersystem fur
den IBM-PC und kompatible Rechner, 1990. Internal report, v1.1.90.

Georg-Friedrich Mayer-Lindenberg. Dokumentation zur Fifth-
Implementierung auf dem ADSP 2181, 1996. Internal report.

Georg-Friedrich Mayer-Lindenberg. Message Passing im ER2 und Funk-
tionen der Laufzeitkerne, 1997. Internal report.

47

[16]

[17]

18]

[19]

[20]

Georg-Friedrich Mayer-Lindenberg. Bootstrap, Programmdownload,
Prozefistart und Kommunikation mit den Sharcs itm ER2, 1999. Internal
report.

Peter Jay Salzman and Ori Pomerantz. Linux Kernel Module Pro-
gramming Guide, 2003. Version 2.4.0, (This document is available at
http://tldp.org/LDP/1lkmpg/lkmpg.pdf).

Arnd Seeger. Schematic of the ER2 Backplane, 1996. Internal document
“er2_mo7”.

M. Torabi. Decomposed Block Cholesky Factorization in the Karmarkar
Algorithm. In Ervin Y. Rodin, editor, Computers and Mathematics with
Applications, volume 20, pages 1-7. Pergamon Press, 1990.

Otto Wohlmuth. Konzepte zur Konstruktion und anwendungsspezifis-
chen Konfiguration von Prozessornetzwerken. PhD thesis, Technische
Universitat Hamburg-Harburg, 2000.

48

Appendix A: G21k C library functions

This is a short list of all available functions, contained in the provided Stan-
dard C Library libc.a, the Math Library 1libm.a and the ARS Library
libars.a.

Please, refer to [6] for a complete reference to description, syntax and needed
headers of the single C routines.

The library 1ibc.a offers the functions:

abs, atexit, atof, atoff, atoi, atol, avg, bsearch,
calloc, clip, div, exit, free, fmaxf, fminf, fsign,
fsignf, getenv, idle, interrupt, isalnum, isalpha,
iscntrl, isdigit, isgraph, islower, isprint, ispunct,
isspace, isupper, isxdigit, 1labs, 1div, 1lmax, I1min,
malloc, max, memchr, memcmp, memcpy, memmove, memset,
min, poll_flag_in, gsort, raise, rand, realloc, set_flag,
srand, sign, signal, strcat, strchr, strcmp, strcpy,
strcspn, strlen, strncat, strncmp, strncpy, strpbrk,
strspn, strstr, strtod, strtodf, strtol, strtoul, strtok,
tolower, toupper

The library 1ibm.a offers the functions:

acos, acosf, asin, asinf, atan, atanf, atan2, atan2f,
ceil, ceilf, cos, cosf, cosh, coshf, exp, expf, fabs,
fabsf, floor, floorf, fmod, fmodf, frexp, frexpf, isinf,
isinff, isnan, isnanf, ldexp, ldexpf, log, loglO, logf,
logl10f, modf, modff, pow, powf, sin, sinf, sinh, sinhf,
sqrt, sqrtf, tan, tanf, tanh, tanhf

The library 1ibars.a offers the functions:
ars_barrier, ars_get_id, ars_signal, ars_wait, idma_read,

idma_read float, idma write, idma_write_float, led_off,
led_on, pack_float

49

90

Appendix B: CD

This CD contains all data—i.e. source codes, examples, documentation and
tools—related to this work. Each directory includes a HTML index file, so a
common browser can be used to traverse the folder structure.

51

52

Eidesstattliche Erklarung

Ich erkliare an Eides statt, dal ich meine Studienarbeit “Programming
and Using a DSP-Based Parallel Computer under Linux” selbstindig ohne
fremde Hilfe angefertigt habe und daf} ich alle von anderen Autoren wortlich
iibernommenen Stellen, wie auch die sich an die Gedanken anderer Autoren
eng anlehnenden Ausfithrungen meiner Arbeit besonders gekennzeichnet und
die Quellen nach den mir vom Priifungsamt angegebenen Richtlinien zitiert
habe.

Hamburg, den 09.12.2003

(Unterschrift)

93

