A Linux Device Driver for the Parallel Port and
the ISA Card Host Interface of the ER2

Dirk Bachle
TI6 (Distributed Systems)
Technical University Hamburg-Harburg

December 2, 2003

Contents

1 Introduction

1.1 What is the ER27
1.2 Why adevicedriver? o
1.3 What is NOWEB?

[

The device driver er2p.c

2.1 The header fileer2p.h
2.2 Header, includes and defines
2.3 Device functions

2.4 How to access the parallel port interface

2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.4.9
2.4.10
2.4.11
2.4.12
2.4.13

Introduction L oo
Adapter functionso
Initializing the adapter
Generating a STROBE
Reset the ER2
Writingdata o oo
Writing a datum to the DATAWRITE register
Writing an address to the DATAWRITE register
Writing a datum/address to the LATCHWRITE register

Generate an ER2 interrupt (IRQ2)
Reading data
Reading data from the DATAREAD register
Reading data from the LATCHREAD register

2.5 IOCTL continued

Additional defines

The Makefile

Inserting and removing the module

Talking to the device

6.1 Creatingadevice file 0L
6.2 Ensure correct settings for parallel port
6.3 Example programo

1 Introduction

1.1 What is the ER2?

The ER2 is a parallel computer built in a modular fashion. On each of its 16
backplanes one can find 16 connectors for little plug-in processor boards, which
are designed around an ADSP-2181. They further contain a FPGA, a crossbar
switch, one connector to the backplane and one to additional modules. If fully
assembled and by the aid of the SHARC modules the ER2 makes it up to a total
of 512 processors (256 ADSP-2181, 256 SHARC-2106x).

By inserting a processor board to the backplane it is directly connected to its
four neighbours in the north, west, south and east. Additionally, one can use the
crossbar switches to establish links between dedicated nodes. This configuration
can be done during runtime.

Thus, a large variety of graphs can be mapped to the network topology of the
ER2. The DSPs offer a computing power of up to 12416 GOPS, especially for
digital signal processing applications.

For further information about the ER2 see also:

http://www.tu-harburg.de/ti6/forschung/erii/

1.2 Why a device driver?

The connection between the ER2 and a PC is established via an interface—also
called host adapter. At the moment, two different host adapters exist. One is
an ISA bus card that has to be inserted to the PC directly. The other host
interface can simply be attached to the parallel port connector of the computer.
Considering the functionality of the two interfaces, no differences exist between
them. The parallel port interface is only much slower (150 KByte/s max.) than
the ISA card (750 KByte/s max.), resulting from the fact that it can not handle
full 16-bit words, but operates with 8 bit instead [1].

It has to be noted that the ISA card interface can only be used together with
the 2181 modules. A write to a SHARC cluster via the Fifth PRS results in a
reset of the ER2.

Both devices are controlled via writing to and reading from IO ports with inb
and outb functions. Hence, programs in Linux that want to access the devices,
i.e. get permissions for the appropriate ports, normally need to be run as root.
This is, of course, somewhat awkward because every interested party should
be enabled to develop applications for the ER2 without giving him/her the
password of the superuser.

There exist several solutions for this problem, including workarounds like setting
the root erecution bit or using a daemon.

The normal way—and definitely the best—is to write a device driver. Being
closely related to normal file handling (open, read, write ...) it does not only
use a well defined interface to the kernel but also provides a useful and portable
interface to applications. By hiding the necessary 10 port accesses within the
device driver one is able to write programs that will always work, regardless of
which interface is used at the moment. If a new host adapter is ever developed,
only the device driver has to be changed. All other source code stays exactly
the same.

2a

1.3 What is NOWEB?

This documentation was generated using NOWEB. NOWEB! is a tool for lit-
erate programming, an approach where the program and its documentation are
written simultaneously. In doing so, the stress should lie on describing how the
program works.

Derived from WEB? and CWEB? NOWEB uses the two programs notangle
and noweave to extract the program and the documentation, respectively, from
one source file.

Source files consist of so called chunks. A chunk can contain a piece of text, or
program code, or both. One can think of chunks as little pieces of code, that will
be combined into the complete program by notangle no matter what language
it is (C, C++, Pascal, Basic, Fortran, Lisp, Scheme, HTML, TgX, WTEX, awk,
perl, ...).

These code fragments are woven together, logically by the surrounding text, and
physically by labels that get defined or referred to in a chunk. With this, one
does not have to jump around in the source code for inserting a new variable,
define or function. They are added right where the thought comes to the head
and this is what NOWEB—and literate programming in general—is all about:
Developing and presenting the idea behind the program instead of the mere
code itself.

Documentation can be output in BTEX, TEX or HTML. The chunks are num-
bered automatically and at the end of each chunk you find a list of the newly
defined and used variables.

For further informations about NOWEB, have a look at its homepage:

http://www.eecs.harvard.edu/ nr/noweb/

2 The device driver er2p.c

While developing the device driver the recommendations in [3, chap. 5] and [4,
chap. 4] are followed, respectively.
The basic structure of the device driver module looks like this:

(er2p.c 2a)= 8cp
(Header 3c)
(Include files 4a)
(Defines 5a)

(Global variables s5b)

(Device declarations sc)

(Module declarations 35a)

2.1 The header file er2p.h

The according header file er2p.h has the following structure:

'Written by Norman Ramsey
2Written by Donald E. Knuth
3Written by Silvio Levy and Donald E. Knuth

2b (er2p.h 2b)=
(HF:Header 3a)

#ifndef _ER2P_H
#define _ER2P_H

(HF:Include files 29a)
(HF:Defines 28b)

#endif

Defines:
_ER2P H, never used.

3a (HF:Header 3a)= (2b)
/* Name: er2p.h */
/* Author: Dirk Baechle, TI6, TUHH */
/* Date: 26.11.2003 */
/* Purpose: Header file for the Linux Device Driver */
/* er2p.c and all programs using the module. */

(Disclaimer 3b)

/** \file er2p.h

Header file for the Linux Device Driver er2p.c and all programs using the module.
\author Dirk Baechle

\version 3.0

\date 26.11.2003

*/

Defines:
file, used in chunks 3, 7a, 11b, 13a, 14, 28b, 29b, 36¢, 39, and 40a.
Uses Device 3c.

3b (Disclaimer 3b)= (3 30a)

/* This file was created automatically from the file er2p.nw by NOWEB. */
/* If you want to make changes, please edit the source file er2p.nw. */
/* A full documentation is in er2p.tex, i.e. er2p.dvi and er2p.ps. */

/* Read it to understand why things are as they are. Thank you! */

Uses file 3a 30a.

2.2 Header, includes and defines

Let’s begin with the header of our device driver module. Although NOWEB is
already used to document the source, a lot of Dozygen commands are added,
such that a short documentation for quick reference can be produced.

3c (Header 3c)= (2a) 8ap

/* Name: er2p.c */

/* Author: Dirk Baechle, TI6, TUHH */

/* Date: 26.11.2003 */

/% Purpose: Linux Device Driver for the parallel */

/% port and the ISA card host interface of the ER2. */

(Disclaimer 3b)

/** \file er2p.c

Linux Device Driver for the parallel port and the ISA card host interface of the ER2.
\author Dirk Baechle

\version 3.0

\date 26.11.2003

*/

Defines:
Device, used in chunks 3a, 7b, and 36b.
Uses file 3a 30a.

Next come the include files.

4a (Include files 4a)= (2a)
(Linuz includes 4b)

#include "er2gdef.h"
#include "er2p.h"

4b (Linuz includes ab)= (4a) 8bp
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/ioport.h>
#include <asm/io.h>

/* Deal with CONFIG_MODVERSIONS */
#if CONFIG_MODVERSIONS==

#define MODVERSIONS

#include <linux/modversions.h>
#endif

/* For character devices */
#include <linux/fs.h>
#include <linux/wrapper.h>

#ifndef KERNEL_VERSION
#define KERNEL_VERSION(a,b,c) ((a)*65536+(b)*256+(c))
#tendif

#if LINUX_VERSION_CODE > KERNEL_VERSION(2,2,0)
#include <asm/uaccess.h>

5a

5b

5¢

#include <linux/delay.h>
#else

#include <asm/delay.h>
#endif

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
MODULE_LICENSE("GPL");

MODULE_AUTHOR("Dirk Baechle");

MODULE_DESCRIPTION("Driver for ER2 host adapters (ISA/PP)");
MODULE_SUPPORTED_DEVICE("er2p");

#endif

Defines:
KERNEL VERSION, used in chunks 11b, 13a, 14, 32, 33a, and 35b.
MODVERSIONS, never used.

Now, the name of the device is defined as it appears in /proc. But most
important is the definition of success...

(Defines 5a)= (2a) 6an

/** The value for success. */
#define SUCCESS 0

/** The name of the device as it appears in /proc/devices. */
static char DEVICE_NAME[10] = "er2p";

Defines:
DEVICE NAME, used in chunks 9-11, 36b, and 37.
SUCCESS, used in chunks 7a, 29b, and 36a.

A flag is added to the global variables. Tt tells whether the device has already
been opened or not.

(Global variables s5b)= (2a) 9cp
/** Is the device open? 1 equals yes, 0 equals no. */
static int device_is_open = 0;

Defines:
device_is_open, used in chunks 7 and 11b.

2.3 Device functions

Starting with the declarations for the device, the following functions should be
supported:

(Device declarations 5c)= (2a)
(Device Open 7a)
(Device Release 11b)
(Device Read 13a)
(Device Write 14)
(Device I0CH 15a)

6a

6b

The function er2p_open is called whenever a process attempts to open the device
file. First, it has to be ensured that the region of 1O ports is still accessible and
then they have to be reserved for use by the driver. But which ports are needed?
Because both interfaces are combined into one device driver all ports have to
be requested at once. Unfortunately, ioctl calls can only be sent to already
opened device files. Otherwise, a special ioctl command could have been added
in order to tell the device driver which interface should be used.

Some defines are introduced, in order to give the various port addresses a name:

(Defines 5a)+= (2a) «5a 20ap>
(Defines for the parallel port eb)
(Defines for the ISA card 6c)

(Defines for the parallel port 6b)= (6a) 19>

/* 10 addresses of the parallel port */

##define PP_LPT1_DATA 0x378

#tdefine PP_LPT1_STATUS 0x379

#tdefine PP_LPT1_COMMAND 0x37A
Defines:

PP_LPT1_COMMAND, used in chunks 20-23.
PP_LPT1 DATA, used in chunks 9b, 10c, 12b, and 21-23.
PP_LPT1_STATUS, never used.

(Defines for the ISA card 6c)= (6a) 25b>
/* I0 addresses of the ISA card */
#define IC_QUTP_LATCH 0x320
#define IC_STROBE_LOW 0x324
##define IC_STROBE_HIGH 0x326
#define IC_RESET_MODE 0x328
##define IC_ADDRESS_MODE 0x32A
##define IC_READ_MODE 0x32C
#define IC_WRITE_MODE 0x32E
Defines:

IC_ADDRESS MODE, used in chunk 26d.

IC_OUTP_LATCH, used in chunks 7c, 11a, 12a, 26, and 27a.
IC_READ MODE, used in chunk 27a.

IC_RESET MODE, used in chunk 26b.

IC_STROBE HIGH, used in chunk 25c.

IC_STROBE LOW, used in chunk 25c.

IC_WRITEMODE, used in chunk 26c.

erp_open checks whether the needed region of ports is still accessible and the
device has not been opened yet. Then all required ports are claimed until the
device is released again (see er2p.release).

This can be done pretty straightforward for the ISA card interface. The parallel
port adapter however, needs to register itself with the Linux parport driver,
which guards the parallel port in newer kernel versions (> 2.4.x). So, following

the programming outlines in [5] and the source of the paride module in the
kernel sources, er2p_open tries to claim the parallel port from parport.

7a (Device Open 7a)= (5¢)

/** Attempts to open the device file.

* Qparam inode Pointer to the inode

* Q@param file Pointer to the device file

* Qreturn O for success, else device is busy

*/
static int er2p_open(struct inode *inode, struct file *file)
{
#if DEBUG
printk("er2p_open(%p, %p)\n", inode, file);
#endif

(check if device has not been opened yet Tb)
(check if ISA port regions are accessible 7c)
(register driver with parport 9b)

(claim parallel port regions 10c)

(claim ISA port regions 11a)

device_is_open++;
MOD_INC_USE_COUNT;

return(SUCCESS);

Defines:
er2p_open, used in chunk 35b.
Uses device_is_open 5b, file 3a 30a, and SUCCESS 5a.

7b (check if device has not been opened yet Tb)= (7a)

/* Is the device open already? */
if (device_is_open)
{
#if DEBUG
printk("Device ER2 is already opened!\n");
#endif
return(-EBUSY);
}

Uses Device 3c and device_is_open 5b.
7c (check if ISA port regions are accessible 7c)= (7a)

/* Is the port region of the ISA card still accessible? #*/
if (check_region(IC_OUTP_LATCH, 16) != 0)

8a

8b

8d

8e

{
#if DEBUG
printk("I0 ports for ISA card are not accessible!\n");
#endif
return(-EBUSY);
X

Uses IC_OUTP_LATCH 6c¢.

In order to register the parallel driver, some definitions from the parport header
are needed.

(Header 3c)+= (2a) <«3c

/* Comment following define if ¢‘parport’’ */
/* driver shouldn‘t be used. */
#define USE_PARPORT

Defines:
USE_PARPORT, used in chunks 8-10 and 12.

(Linuz includes ab)+= (4a) <4b

#ifdef USE_PARPORT
#include <linux/parport.h>
#endif

Uses USE_PARPORT &a.
A new set of functions is added for interacting with the parport module:

(er2p.c 2a)+= a2a
#ifdef USE_PARPORT
(Parport support functions 8d)
#endif

Uses USE_PARPORT 8a.

(Parport support functions 8d)= (8¢)
(Attach port ge)
(Detach port 9a)

er2p_attach is called whenever the function parport register driver detects
a new parallel port. Since the needed port is directly allocated in er2p_open,
there 1s nothing to do. ..

(Attach port ge)= (84d)

/*% Attaches the found port to the device.

* Qparam port Pointer to struct for the found parallel port
*/

void er2p_attach(struct parport *port)

{

9a

9b

}

Defines:
er2p_attach, used in chunk 9c.

er2p_detach is called whenever the function parport register driver detects
that a parallel port vanished and therefore should be detached. Again, a rather
uninteresting case. . .

(Detach port 9a)= (8d)

/** Is called if a parallel port should be detached.
* Qparam port Pointer to struct for the parallel port
*/
void er2p_detach(struct parport #*port)
{

)

}

Defines:
er2p_detach, used in chunk 9c.

(register driver with parport 9b)= (7a)

#ifdef USE_PARPORT
(register parallel device 10a)
#else
/* Is the region for the parallel port adapter still accessible? */
if (check_region(PP_LPT1_DATA, 3) != 0)
{
#if DEBUG
printk("I0 ports for parallel port adapter are not accessible!\n");
#endif
return(-EBUSY);
}
#endif

Uses PP_LPT1 DATA 6b and USE_PARPORT 8a.

A special struct is needed, that stores the pointers to the functions er2p_attach
and er2p_detach.

(Global variables 5by+= (2a) «5b 10b>

#ifdef USE_PARPORT
/* Function prototypes */
void er2p_attach(struct parport *);
void er2p_detach(struct parport *);
/** Stores the pointers to the functions for attaching and detaching
detected parallel ports. */
static struct parport_driver er2p_driver = {
DEVICE_NAME,
er2p_attach,

er2p_detach,
NULL

3

#endif

Defines:
er2p driver, used in chunk 10a.
Uses DEVICE NAME 5a, er2p_attach 8e, er2p_detach 9a, and USE_PARPORT 8a.

10a (register parallel device 10a)= (9b)
if (parport_register_driver(&er2p_driver) != 0)
{
#if DEBUG
printk("ER2P driver could not be registered with parport module!\n");
#endif

return(-EBUSY) ;

Uses er2p.driver 9c.

The pointer er2p_port stores the allocated parallel port, which is dereferenced
again in er2p release. er2p_device keeps the pointer to the registered device.
It is needed for claiming the ports and unregistering.

10b (Global variables 5b)+= (2a) <9c 30bb

#ifdef USE_PARPORT

/** Pointer to the struct of the allocated parallel port. */
struct parport *er2p_port;

/%% Pointer to the struct of the registered device, is needed
for unregistering. */

struct pardevice *er2p_device = 0;

#endif

Defines:
er2p_device, used in chunks 10c and 12.
er2p_port, used in chunks 10c and 12b.
Uses USE_PARPORT 8a.

If the claiming of ports via the parport module fails, the device is unregistered
immediately.

10¢ (elatm parallel port regions 10c)= (7a)
#ifdef USE_PARPORT

/* Get port with correct base number */
er2p_port = parport_find_base(PP_LPT1_DATA);
if (er2p_port == NULL)
{
#if DEBUG
printk("Parallel I0 port %X could not be found!\n", PP_LPT1_DATA);

10

1la

11b

#endif
return(-EBUSY);
¥

er2p_device = parport_register_device(er2p_port,
DEVICE_NAME,

NULL,
NULL,
NULL,
0,
NULL);
if (er2p_device > 0)
{
if (parport_claim(er2p_device) != 0)
{
parport_unregister_device(er2p_device);
#if DEBUG
printk("I0 ports for parallel port adapter are not accessible via parport driver!\
#endif
return(-EBUSY);
}
}
#else

/* Claim port regions */
request_region(PP_LPT1_DATA, 3, DEVICE_NAME);
#endif

Uses DEVICE NAME 5a, er2p.device 10b, er2p_port 10b, PP_LPT1 DATA 6b, and USE_PARPORT 8a.

(clatm ISA port regions 11a)= (7a)

/* Claim port regions */
request_region(IC_OUTP_LATCH, 16, DEVICE_NAME);

Uses DEVICE NAME 5a and IC_OUTP_LATCH 6c¢.

er2p release is called if a process closes the device file. Tt does not have a
return value because it can not fail. It releases the region of ports needed
for IO and unregisters the driver from the parport module. Afterwards, the
device_is_open counter is decreased.

(Device Release 11b)= (5¢)

/** Closes the device file.

* Q@param inode Pointer to the inode

* Q@param file Pointer to the device file

*/

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

static int er2p_release(struct inode *inode, struct file *file)
#else

static void er2p_release(struct inode *inode, struct file *file)

11

12a

12b

12¢c

#endif
{

#if DEBUG
printk("er2p_release(%p, %p)\n", inode, file);
#endif

(release ISA port regions 12a)
(release parallel port regions 12b)
(unregister parallel device driver 12¢)

/* Release device counter */
device_is_open--;

MOD_DEC_USE_COUNT;

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
return(0);
#tendif

Defines:
er2p._release, used in chunk 35b.
Uses device_is_open 5b, file 3a 30a, and KERNEL VERSION 4b.

(release ISA port regions 12a)= (11b)
/* Release port regions */
release_region(IC_OUTP_LATCH, 16);
Uses IC_OUTP_LATCH 6c.
(release parallel port regions 12b)= (11b)
#ifdef USE_PARPORT
parport_release(er2p_device);
parport_put_port (er2p_port);
#else
/* Release port regions */
release_region(PP_LPT1_DATA, 3);
#endif
Uses er2p.device 10b, er2p_port 10b, PP_.LPT1 DATA 6b, and USE_PARPORT &a.
(unregister parallel device driver 12¢)= (11b)
#ifdef USE_PARPORT

parport_unregister_device(er2p_device);
#endif

Uses er2p.device 10b and USE_PARPORT 8a.

12

er2p_read is called whenever a process, that has already opened the device file,
attempts to read from it. Since all the communication between the PC and
the interface shall be handled by means of ioctl functions, the given buffer is
simply filled with zeros on every read.

13a (Device Read 13a)= (5¢)

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
/** Reads from the already opened device.
* Q@param file Pointer to the device file
* Qparam buffer Pointer to the buffer
* Q@param length Length of the buffer
* Qparam offset Offset to the file
* Q@return Number of bytes read
*/
static ssize_t er2p_read(struct file *file, char *buffer, size_t length,
loff_t *offset)
#else
/** Reads from the already opened device.
* Q@param inode Pointer to inode
* Q@param file Pointer to the device file
* Qparam buffer Pointer to the buffer
* Q@param length Length of the buffer
* Qreturn Number of bytes read
*/
static int er2p_read(struct inode *inode, struct file *file, char *buffer,
int length)
#endif
{
/* Number of bytes actually written into the buffer */
int bytes_read = 0;

#if DEBUG
printk("er2p_read(%p, %p, %p)\n", file, buffer, &length);
#endif

(fill buffer with zeros 13b)

#if DEBUG
printk("Read %d bytes\n", bytes_read);
#endif

return(bytes_read);

}

Defines:
er2p_read, used in chunk 35b.
ssize_t, never used.

Uses file 3a 30a and KERNEL_VERSION 4b.

13b (fill buffer with zeros 13b)= (13a)

13

while (length)
{

put_user(0x0, buffer++);

bytes_read++;
length--;

er2p_write is called if somebody tries to write to the device file.
Again—just like in er2p _read—it basically does nothing but simply returns the
number of written bytes, in order to pretend everything is OK.

(Device Write 14)= (5¢)

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

/** Writes to the already opened device.

* Qparam file Pointer to the device file

* Qparam buffer Pointer to the buffer

* @param length Length of the buffer

* Qparam offset Offset to the file

* Qreturn Number of bytes written

*/

static ssize_t er2p_write(struct file *file, const char *buffer, size_t length,
loff_t *offset)

#else

/** Writes to the already opened device.

* Q@param inode Pointer to inode

Oparam file Pointer to the device file

Oparam length Length of the buffer
@return Number of bytes written
*/
static int er2p_write(struct inode *inode, struct file *file,
const char *buffer, int length)

*
* Qparam buffer Pointer to the buffer
*
*

#endif
{

#if DEBUG
printk("er2p_write (%p, %s, %d)'", file, buffer, length);
#endif

return(length);
}

Defines:
er2p write, used in chunk 35b.
ssize_t, never used.

Uses file 3a 30a and KERNEL_VERSION 4b.

14

15a

15b

15¢

The ioctl function is the very core of this little device driver. It is split up into
some auxiliary functions and the ioctl subroutine itself.

(Device I0CH 15a)= (5¢)
(Auziliary IOCH functions 15b)
(Device I0CH function 29b)

The auxiliary functions are responsible for talking to the parallel port (PP) or
the ISA card (IC), i.e. the interface to the ER2, directly.

(Auziliary TOCH functions 15b)= (15a)
(PP:Auziliary IOCH functions 15¢c)
(IC: Auziliary TOCH functions 25a)

The supported functions for the parallel port interface are:

(PP:Auziliary IOCH functions 15¢)= (15b)
(PP:Send Strobe Signal 20b)

(PP:Reset ER2 20c)

(PP:Write Latch 21a)

(PP:Write Byte 21b)

(PP:Write Address 21c)

(PP:Trigger ER2 Interrupt 22a)

(PP:Read Latch 22b)

(PP:Read Data 23a)

(PP:Write Word Data 23b)

(PP:Write Word Address 24a)

(PP:Read Word Data 24b)

2.4 How to access the parallel port interface

Following, a few words about the parallel port host adapter and how to access
it, i.e. how to trigger the provided functions:

2.4.1 Introduction

The interface—also called host adapter in the following—ensures the communi-
cation between a PC and the parallel computer ER2. Tt uses the parallel port
of the PC and the IDMA port of the so called root processor on the ER2. The
root, processor is the ADSP2181 that is directly attached to the host adapter.
Although the interface needs the PPE mode for bidirectional data transfer to
work correctly, it does not use it.

Since the IDMA port has 16 bit but the parallel port only 8 bit, always two
cycles are needed for data transfer. The HIGH byte of a datum/address has to
be stored in a special latch register of the host adapter.

The both directions read and write operate independently, i.e. there exist two
latch registers (LATCHREAD and LATCHWRITE) for the HIGH byte and two
registers (DATAREAD and DATAWRITE) for the LOW byte.

15

| IDMA-Port of the ADSP2181 |

i — -

LATCHREAD LATCHWRITE
, Host adapter
DATAREAD DATAWRITE I

‘ Parallel port of the PC ‘

After the power reset both registers are zero and can only be changed by over-
writing them with a different value.

2.4.2 Adapter functions

The host adapter provides 8 functions—actually, only seven—that can be spec-
ified via the pins SELO-SFEL2 of the parallel port command register.

Z
°

-~ OOt W N~ O

Description

Reset of the ER2

Write a datum to the DATAWRITE register

Write an address to the DATAWRITE register

Write a datum/address to the LATCHWRITE register
Trigger an ER2 interrupt (IRQ2)

Read a datum/address from the DATAREAD register
Read a datum/address from the LATCHREAD register

No function

The functions 1 and 2 transfer the whole 16-bit word to the ER2 immediately.
While communicating with the interface the following port addresses of LPT1
are used:

Address Port
0x378 Data port
0x379 Status port
0x37A Command port

In order to trigger one of these functions the desired action has to be specified
by setting the appropriate bits on the command port. Then a pulse has to be
sent to the Auto-Linefeed pin to execute the command. This pulse i1s supposed
to be actwve low, but since the Auto-Linefeed pin gets inverted, it has to be set
to 1 (HIGH) first and then to 0 (LOW). This is called a STROBE from now on.
The bits SEL0-SE L2 for specifying a command are not arranged in consecutive
order at the parallel port. Hence, the bit patterns look a little bit confusing ...
What follows is a short overview of the ports and the meaning of each single

bit:
Status port (0x379)

16

Bit Status

7 Busy

6 Acknowledge

5 Out of Paper

4 Select In

3 Error

2 IRQ (not)

1 Reserved

0 Reserved

Command port (0x37A)
Bit Normal meaning Meaning for interface Con. Pin No.

7 Unused
6 Unused
5 Enable bi-directional port 1=Read, 0=Write
4 Enable IRQ via ACK line
3 Select printer SELO Pin 17
2 Initialize printer (Reset) SEL1 Pin 16
1 Auto Linefeed STROBE Pin 14
0 Printer-Strobe SEL2 Pin 1

The overlines for SELQ, SEL2 and STROBE denote that these signals get
inverted in the parallel port.
Now the triggering of the single functions is described step by step:

2.4.3 Initializing the adapter

This initialization sets the interface to inactive mode, 1.e. the output drivers of
the host adapter are in high impedance state.

o Write 0x24 to the command port

2.4.4 Generating a STROBE

The STROBE signal triggers the functions of the host adapter. Since only one
bit (Auto-Linefeed) of the command port has to be toggled, while the others
specify the command, we have to use logical ANDs and ORs.

e Combine the command with 0x02 by a logical OR and write it to the
command port. The Auto-Linefeed bit is set to 1 (HIGH), gets inverted
internally and at pin 14 of the parallel port connector we get a 0 (LOW).

e Combine the command with 0xFD by a logical AND and write it to the
command port. The Auto-Linefeed gets 0 (LOW) and pin 14 1 (HIGH)
again. The adapter detects the strobe signal and executes the specified
function.

This is called generating a command-strobe from now on.

17

2.4.5 Reset the ER2
o Write the command 0x09 to the command port.

o (Generate a command-strobe with 0x09.

2.4.6 Writing data

The order of the single commands while writing data may not be exchanged!
Writing the datum/address to the data port first and then the command to the
command port can give problems with newer motherboards. They seem to be
very sensitive to slightly incorrect timings ...

2.4.7 Writing a datum to the DATAWRITE register
e Write the command 0x01 to the command port.
e Write the datum to the data port.

o (Generate a command-strobe with 0x01.

2.4.8 Writing an address to the DATAWRITE register
e Write the command 0x0D to the command port.
e Write the address to the data port.

o (Generate a command-strobe with 0x0D.

2.4.9 Writing a datum/address to the LATCHWRITE register
e Write the command 0x05 to the command port.
o Write the datum/address to the data port.

o Generate a command-strobe with 0x05.

2.4.10 Generate an ER2 interrupt (IRQ2)

o Write the command 0x08 to the command port.

o (Generate a command-strobe with 0x08.

2.4.11 Reading data

While reading data the bits of the data port are only valid as long as the Auto-
Linefeed bit is held at 1 (HIGH), i.e. pin 14 is 0 (LOW).

Thus, the generate command-strobe routine can not be used as before.

18

2.4.12 Reading data from the DATAREAD register
o Write the command 0x2C to the command port.

e Combine the command 0x2C with 0x02 by a logical OR and write it to
the command port. This sets the Auto-Linefeed bit to 1 (HIGH), i.e. pin
14 to 0 (LOW). The output drivers of the interface switch to active mode
and the valid datum appears at the data port.

¢ Read the datum from the data port.

e Combine the command 0x2C with 0xFD by a logical AND and write it to
the command port. This sets the Auto-Linefeed bit to 0 (LOW) and pin
14 to 1 (HIGH) again. The output drivers of the interface switch back to
the high impedance state.

2.4.13 Reading data from the LATCHREAD register

e Write the command 0x20 to the command port.

e Combine the command 0x20 with 0x02 by a logical OR and write it to
the command port. This sets the Auto-Linefeed bit to 1 (HIGH), i.e. pin
14 to 0 (LOW). The output drivers of the interface switch to active mode
and the valid datum appears at the data port.

¢ Read the datum from the data port.

e Combine the command 0x20 with 0xFD by a logical AND and write it to
the command port. This sets the Auto-Linefeed bit to 0 (LOW) and pin
14 to 1 (HIGH) again. The output drivers of the interface switch back to
the high impedance state.

2.5 IOCTL continued

The following defines are used for the implementation of the single adapter
functions.

(Defines for the parallel port 6b)+= (6a) <6b

/* Interface commands */

#define PP_IFC_STROBE_LOW 0x02
#define PP_IFC_STROBE_HIGH 0xFD
#define PP_STROBE_DELAY 10

#define PP_IFC_RESET_ER2 0x09
#define PP_IFC_WRITE_LATCH 0x05
#define PP_IFC_WRITE_DATA 0x01
#define PP_IFC_WRITE_ADDRESS 0x0D
#define PP_IFC_IRQ_ER2 0x08
#define PP_IFC_READ_LATCH 0x2C
#define PP_IFC_READ_DATA 0x20

19

20a

20b

20c

Defines:
PP_IFC_TRQ_ER2, used in chunk 22a.
PP_IFC_READ DATA, used in chunk 23a.
PP_IFC_READ LATCH, used in chunk 22b.
PP_IFC RESET ER2, used in chunk 20c.
PP_IFC_STROBE_HIGH, used in chunks 20b, 22b, and 23a.
PP_IFC_STROBE_LOW, used in chunks 20b, 22b, and 23a.
PP_IFC WRITE_ADDRESS, used in chunk 21c.
PP_TFC WRITE DATA, used in chunk 21b.
PP_IFC WRITE_LATCH, used in chunk 21a.
PP_STROBE DELAY, used in chunks 20b, 22b, and 23a.

A new data type called byte is defined.
(Defines 5a)+= (2a) <6a

/* Defining a byte */
typedef unsigned char byte;

Defines:
byte, used in chunks 20, 21, 23, and 24.

This function sends a strobe signal, i.e. the interface will execute the function
as specified by the signals on the command port.

(PP:Send Strobe Signal 20b)= (15¢)

/** Triggers one of the eight functions of the interface by sending
* a LOW pulse to the pin AUTO-LF (= STROBE) combined with the

* command byte.

* Q@param data The data byte for the command

*/

static void pp_ifc_send_strobe(byte data)

{
outb((PP_IFC_STROBE_LOW | data), PP_LPT1_COMMAND);
udelay(PP_STROBE_DELAY) ;
outb((PP_IFC_STROBE_HIGH & data), PP_LPT1_COMMAND);
udelay(PP_STROBE_DELAY) ;

}

Defines:

pp-ifc_send strobe, used in chunks 20-22.
Uses byte 20a 22b 23a, PP_IFC_STROBE HIGH 19, PP_TFC_STROBE LOW 19, PP_LPT1_COMMAND 6b,
and PP_STROBE DELAY 19.

This function resets the ER2.
(PP:Reset ER2 20c)= (15¢)

/** Resets the ER2.

*/

static void pp_ifc_reset_er2(void)

{
outb(PP_IFC_RESET_ER2, PP_LPT1_COMMAND) ;
pp_ifc_send_strobe(PP_IFC_RESET_ER2);

20

2la

21b

Defines:
pp-ifc_reset_er2, used in chunk 31a.
Uses PP_IFC_RESET ER2 19, pp_ifc_send_strobe 20b, and PP_LPT1_COMMAND 6b.

This function writes a byte (the HIGH byte of a datum or address) into the
latch register of the interface.

(PP:Write Latch 21a)= (15¢)

/** Writes a byte (the HIGH byte of a datum or address)
* to the latch register of the interface.
* Qparam data The data byte

*/

static void pp_ifc_write_latch(byte data)

{
outb(PP_IFC_WRITE_LATCH, PP_LPT1_COMMAND);
outb(data, PP_LPT1_DATA);
pp_ifc_send_strobe (PP_IFC_WRITE_LATCH);

}

Defines:

pp-ifc write latch, used in chunks 23b and 24a.
Uses byte 20a 22b 23a, pp_ifc_send strobe 20b, PP_IFC_ WRITE LATCH 19, PP_LPT1_COMMAND 6b,
and PP_LPT1 DATA 6b.

This function writes a byte (the LOW byte) into the data register of the inter-
face.

PP:Write Byte 21b)= 15¢
Yy (15¢)

/** Writes a byte (the LOW byte of a datum)
* to the register of the interface.
* Qparam data The data byte

*/

static void pp_ifc_write_data(byte data)

{
outb(PP_IFC_WRITE_DATA, PP_LPT1_COMMAND);
outb(data, PP_LPT1_DATA);
pp_ifc_send_strobe(PP_IFC_WRITE_DATA);

¥

Defines:

pp-ifc_write_ data, used in chunk 23b.
Uses byte 20a 22b 23a, pp_ifc_send_strobe 20b, PP_.IFC_WRITE DATA 19, PP_LPT1_COMMAND 6b,
and PP_LPT1 DATA 6b.

This function writes an address byte (the LOW byte of an address) into the
register of the interface.

21

21c (PP:Write Address 21c)= (15¢)

/** Writes an address byte (the LOW byte of an address)
* to the register of the interface.
* Qparam address The address byte

*/

static void pp_ifc_write_address(byte address)

{
outb(PP_IFC_WRITE_ADDRESS, PP_LPT1_COMMAND);
outb(address, PP_LPT1_DATA);
pp_ifc_send_strobe (PP_IFC_WRITE_ADDRESS);

¥

Defines:

pp-ifc_write address, used in chunk 24a.
Uses byte 20a 22b 23a, pp-ifc_send strobe 20b, PP_IFC_WRITE_ADDRESS 19,
PP_LPT1_COMMAND 6b, and PP_LPT1 _DATA 6b.

This function is used to send messages between the processors of the ER2 and
triggers an interrupt (IRQ2) at the root processor.

22a (PP:Trigger ER2 Interrupt 22a)= (15¢)

/** Triggers an interrupt on the ER2.

*/

static void pp_ifc_irq_er2(void)

{
outb(PP_IFC_IRQ_ER2, PP_LPT1_COMMAND);
pp_ifc_send_strobe(PP_IFC_IRQ_ER2);

}

Defines:

pp-ifc_irq._er2, used in chunk 31b.
Uses PP_TFC_TRQ_ER2 19, pp_ifc_send strobe 20b, and PP_LPT1_COMMAND 6b.

This function reads a byte (the HIGH byte of a datum) from the latch register
of the interface.

22b (PP:Read Latch 22b)= (15¢)

/** Reads a byte (the HIGH byte of a datum or address)
* from the latch register of the interface.
* Qreturn The data byte
*/
static byte pp_ifc_read_latch(void)
{
byte data;

outb(PP_IFC_READ_LATCH, PP_LPT1_COMMAND);
outb((PP_IFC_READ_LATCH | PP_IFC_STROBE_LOW), PP_LPT1_COMMAND);
udelay(PP_STROBE_DELAY);

data=inb(PP_LPT1_DATA);

22

23a

23b

outb((PP_IFC_READ_LATCH & PP_IFC_STROBE_HIGH), PP_LPT1_COMMAND);
udelay (PP_STROBE_DELAY);

return(data);

Defines:
byte, used in chunks 20, 21, 23, and 24.

Uses PP_IFC_READ_LATCH 19, PP_IFC_STROBE HIGH 19, PP_IFC_STROBE_LOW 19,
PP_LPT1_COMMAND 6b, PP_LPT1 DATA 6b, and PP_STROBE DELAY 19.

This function reads a byte (the LOW byte of a datum) from the register of the
interface.

(PP:Read Data 23a)= (15¢)

/** Reads a byte (the LOW byte of a datum)
* from the register of the interface.
* Qreturn The data byte

*/

static byte pp_ifc_read_data(void)

{
byte data;
outb(PP_IFC_READ_DATA, PP_LPT1_COMMAND) ;
outb((PP_IFC_READ_DATA | PP_IFC_STROBE_LOW), PP_LPT1_COMMAND);
udelay(PP_STROBE_DELAY);
data=inb(PP_LPT1_DATA);
outb((PP_IFC_READ_DATA & PP_IFC_STROBE_HIGH), PP_LPT1_COMMAND) ;
udelay(PP_STROBE_DELAY);
return(data);

¥

Defines:

byte, used in chunks 20, 21, 23, and 24.
Uses PP_TIFC_READ DATA 19, PP_IFC_STROBE HIGH 19, PP_IFC_STROBE LOW 19, PP_LPT1_COMMAND 6b,
PP_LPT1 DATA 6b, and PP_STROBE DELAY 19.

This function writes a 16-bit data word to the IDMA port of the root processor.
(PP:Write Word Data 23b)= (15¢)

/** Writes a 16-bit data word to the IDMA port of the
* ADSP-2181 processor.
* Qparam data The 16-bit data word
*/
static void pp_ifc_write_data_word(int data)
{
byte data_byte;

/* Write the HIGH byte to the latch register first */
data_byte = (byte) (data >> 8);

23

24a

24b

pp_ifc_write_latch(data_byte);

/* Then write the LOW byte */
data_byte = (byte) (data & 0xO00FF);
pp_ifc_write_data(data_byte);

Defines:
pp-ifc write data word, used in chunk 32b.
Uses byte 20a 22b 23a, pp_ifc write data 21b, and pp_ifc write latch 21a.

This function writes a 16-bit address word to the IDMA port of the root pro-
Cessor.

(PP:Write Word Address 24a)= (15¢)

/** Writes a 16-bit address word to the IDMA port of the
* ADSP-2181 processor.

* Q@param address The 16-bit address word

*/

static void pp_ifc_write_address_word(int address)

{
byte address_byte;

/* Write the HIGH byte to the latch register first */
address_byte = (byte) (address >> 8);
pp_ifc_write_latch(address_byte);

/* Then write the LOW byte */
address_byte = (byte) (address & 0xO00FF);
pp_ifc_write_address(address_byte);

Defines:
pp-ifc_write_address.word, used in chunk 33b.
Uses byte 20a 22b 23a, pp-ifc write_address 21c, and pp_ifc write latch 21a.

This function reads a 16-bit data word from the IDMA port of the root processor.
(PP:Read Word Data 24b)= (15¢)

/** Reads a 16-bit data word from the IDMA port of the
* ADSP-2181 processor.
* Qreturn The 16-bit data word
*/
static int pp_ifc_read_data_word(void)
{
int data;
byte data_byte;

/* Read the LOW byte first */

data_byte = pp_ifc_read_data();
data = (int) (data_byte);

24

25a

25b

25¢

/* Then read the HIGH byte from the latch register */
data_byte = pp_ifc_read_latch();
data |= (int) (data_byte << 8);

return(data);

Defines:
pp-ifc_read data word, used in chunk 34a.
Uses byte 20a 22b 23a.

There are just a few auxiliary functions for the ISA card because it supports
full 16-bit words. Accessing this interface is rather easy, using the hints given
in [2, p. 3]. The following functions are required:

(IC: Auziliary TOCH functions 25a)= (15b)
(IC:Generate Strobe 25¢)
(IC:Reset ER2 26b)
(IC:Write Word Data 26c)
(IC:Write Word Address 26d)
(IC:Read Word Data 27a)
(IC:Trigger ER2 Interrupt 28a)

This function generates a strobe signal for the ISA card host adapter. A word
is written to the STROBE_LOW port and then to the STROBE HIGH port. The ISA
card also needs a little delay between the single TO port accesses.

(Defines for the ISA card 6c)+= (6a) <6c 26a>

/** ISA card strobe delay */
#define ISA_STROBE_DELAY 10

Defines:
ISA_STROBE DELAY, used in chunks 25 and 26.

(IC:Generate Strobe 25¢)= (25a)

/** Generates a STROBE for the ISA card host adapter.
*/

static void ic_ifc_generate_strobe(void)

{
udelay(ISA_STROBE_DELAY);
outw(0, IC_STROBE_LOW);
udelay(ISA_STROBE_DELAY);
outw(0, IC_STROBE_HIGH);
udelay(ISA_STROBE_DELAY);

}

Defines:

ic_ifc_generate_strobe, used in chunks 26 and 27a.
Uses IC_STROBE HIGH 6¢, IC_STROBE_LOW 6¢, and ISA_STROBE DELAY 25b.

25

26a

26b

26¢

This function resets the ER2. A word is written to the RESET MODE port, followed
by a strobe.

(Defines for the ISA card 6c)+= (6a) «25b 27bb

/** ISA card reset delay */
#define IC_RESET_DELAY 10000

Defines:
IC_RESET DELAY, used in chunk 26b.

(IC:Reset ER2 26b)= (25a)
/%% Resets the ER2.
*/
static void ic_ifc_reset_er2(void)
{
outw(0, IC_RESET_MODE);
udelay(IC_RESET_DELAY);
ic_ifc_generate_strobe();
¥
Defines:

ic_ifc_reset_er2, used in chunk 31a.
Uses ic_ifc_generate_strobe 25c, IC_RESET DELAY 26a, and IC_RESET_MODE 6c¢.

This function writes a 16-bit data word to the IDMA port of the root processor.
First, the ISA card is set to WRITEMODE. Then, the data is put to the port
OUTP_LATCH, followed by a strobe.

(IC:Write Word Data 26c)= (25a)
/%% Writes a 16-bit data word to the IDMA port of the

* ADSP-2181 processor.
* Qparam data The 16-bit data word

*/

static void ic_ifc_write_data_word(int data)

{
outw(0, IC_WRITE_MODE);
udelay(ISA_STROBE_DELAY);
outw(data, IC_OUTP_LATCH);
ic_ifc_generate_strobe();

}

Defines:

ic_ifc write.data word, used in chunk 32c.
Uses ic_ifc_generate_strobe 25c, IC_OUTP_LATCH 6¢c, IC_WRITEMODE 6c,
and ISA_STROBE DELAY 25b.

Similar to pp_ifc write data word a 16-bit address is written. First, the ISA
card is set to ADDRESS MODE. Then, the address is put to the port OUTP_LATCH
and a strobe 1s generated.

26

26d

27a

27b

(IC:Write Word Address 26d)= (25a)

/%% Writes a 16-bit address word to the IDMA port of the

* ADSP-2181 processor.

* Q@param address The 16-bit address word

*/

static void ic_ifc_write_address_word(int address)

{
outw(0, IC_ADDRESS_MODE);
udelay(ISA_STROBE_DELAY);
outw(address, IC_OUTP_LATCH);
ic_ifc_generate_strobe();

Defines:

ic_ifcwrite_address.word, used in chunks 28a and 33b.
Uses IC_ADDRESS MODE 6¢, ic_ifc_generate strobe 25c, IC_OUTP_LATCH 6c,

and ISA_STROBE DELAY 25b.
This function reads a 16-bit data word from the IDMA port of the root processor.
First, the ISA card is set to READ_MODE. Then, after generating a strobe the data
can be read from the OUTP_LATCH port.

(IC:Read Word Data 27a)= (25a)

/*% Reads a 16-bit data word from the IDMA port of the
* ADSP-2181 processor.
¥ Q@return The 16-bit data word

*/

static int ic_ifc_read_data_word(void)

{
int data;
outw(0, IC_READ_MODE);
ic_ifc_generate_strobe();
data = inw(IC_OUTP_LATCH);
return(data);

¥

Defines:

ic_ifc read data word, used in chunk 34b.
Uses ic_ifc_generate_strobe 25c¢, IC_OUTP_LATCH 6¢, and IC_READ_MODE 6c¢.

An ER2 interrupt (IRQ2) can be triggered via the ISA card host adapter by
setting the address to 0x8000. First, a define is added for this value:

(Defines for the ISA card 6c)+= (6a) <26a

/** Interrupt for sending messages */
#define IRQ 0x8000

Defines:
IRQ, used in chunk 28a.

27

28a

28b

(IC: Trigger ER2 Interrupt 28a)= (25a)

/** Triggers an interrupt on the ER2.

*/
static void ic_ifc_irq_er2(void)
{
ic_ifc_write_address_word(IRQ);
¥
Defines:

ic_ifc_irq_er2, used in chunk 31b.
Uses ic_ifc write_address word 26d and IRQ 27b.

While developing the ioctl function in the following chunks, the logical actions
are used as defined in the header file er2p.h:

IOCTL_ER2_RESET Reset the ER2

IOCTL_ER2_IRQ Trigger an ER2 interrupt

IOCTL_ER2 WRITE WORDS Write 16-bit data

IOCTL_ER2 WRITE_ADDRESS Write a 16-bit address word

IOCTL_ER2 READ WORDS Read 16-bit data

IOCTL_ER2_SET _LENGTH Sets the number of words to read/write
IOCTL_ER2 SET_INTERFACE Sets the used interface

They have to be declarated in a separate header file because they need to be
known both to the kernel module and the functions calling ioctl in pc_er2.c.
Additionally, the major device number and the name of the device file are
defined. Please, note that DEVICE FILE NAME and DEVICE NAME are something
different although they have the same content.

(HF:Defines 28b)= (2b)

/** The major device number */
#define DEVICE_MAJOR 219

/** The provided ioctl functions */

#define IOCTL_ER2_RESET _IOR(DEVICE_MAJOR, O, int *)
#define IOCTL_ER2_IRQ _IOR(DEVICE_MAJOR, 1, int *)
#define IOCTL_ER2_WRITE_WORDS _IOR(DEVICE_MAJOR, 2, int *)
#define IOCTL_ER2_WRITE_ADDRESS _IOR(DEVICE_MAJOR, 3, int *)
#define IOCTL_ER2_READ_WORDS _IOR(DEVICE_MAJOR, 4, int *)
#define IOCTL_ER2_SET_LENGTH _IOR(DEVICE_MAJOR, 5, int *)
#define IOCTL_ER2_SET_INTERFACE _IOR(DEVICE_MAJOR, 6, int *)

/** The name of the device file */
#tdefine DEVICE_FILE_NAME "er2p"

Defines:
DEVICE FILE NAME, never used.
DEVICE MAJOR, used in chunks 36b and 37.
IOCTL ER2_IRQ, used in chunk 31b.
IOCTL_ER2_READ WORDS, used in chunks 33c, 40, and 41b.
IOCTL_ER2_RESET, used in chunks 31a and 40b.

28

29a

29b

29¢

I0OCTL_ER2 _SET_INTERFACE, used in chunk 34d.

IOCTL ER2_SET_LENGTH, used in chunk 34c.

IOCTL ER2 WRITE_ADDRESS, used in chunks 33a, 40, and 41.

IOCTL_ER2 WRITE WORDS, used in chunks 32a, 40c, and 41a.
Uses file 3a 30a.

Since the ioctl call is used, ioctl.h needs to be included.

(HF:Include files 29a)= (2b)

#include <linux/ioctl.h>

er2p_ioctl is called whenever a process tries to do an ioctl on our device file.
It has two extra parameters: the number of the called ioctl and the parameter
given to the ioctl function.

If the ioctl is write or read/write—meaning output is returned to the calling
process—, the ioctl call returns the output of this function.

Here, no function will return a value. As parameter all the functions get a
pointer to int.

(Device I0CHl function 29b)= (15a)

/** Handles the ioctl calls of the device driver.
Oparam inode Pointer to the inode

Oparam file Pointer to the file

Oparam ioctl_num Number of the ioctl

Qparam ioctl_param Parameter, i.e. pointer to int
@return 0

* O K X *

*/
int er2p_ioctl(struct inode *inode, struct file *file,

unsigned int ioctl_num, unsigned long ioctl_param)
{

int *temp, data;

switch (ioctl_num)

{
(Case Statement 29¢)

}

return(SUCCESS);

Defines:
er2p_ioctl, used in chunk 35b.
Uses file 3a 30a and SUCCESS 5a.

(Case Statement 29¢)= (29b)
(Case Reset 31a)
(Case Interrupt 31b)
(Case Write Words 32a)
(Case Write Address 33a)
(Case Read Words 33c)

30a

30b

(Case Set Length 34c)
(Case Set Interface 34d)

For the following case statements it has to be known whether the device driver
should use the parallel port or the ISA card interface. Thus, a new header file
named er2gdef .h is introduced. Tt keeps some defines that will be used by all
programs somehow relating to this driver.
(er2gdef.h 30a)=

(Disclaimer 3b)

/** \file er2gdef.h

Header file for some defines, common to all programs and libs that

want to use the ER2 via the Linux device driver *°¢

\author Dirk Baechle
\version 1.0

\date 26.11.2003

*/

er2p’’.

#ifndef _ER2GDEF_H
#define _ER2GDEF_H

/* Defines for the ER2 host interface type */
#define PARALLEL_PORT 0
#define ISA_CARD 1

/* Defines for function return values */

#define 0K 0
##define ERROR 1
#endif

Defines:

_ER2GDEF H, never used.

ERROR, never used.

file, used in chunks 3, 7a, 11b, 13a, 14, 28b, 29b, 36¢, 39, and 40a.
ISA_CARD, used in chunk 34d.

0K, never used.

PARALLEL PORT, used in chunks 30-34.

A new global variable is added for the kind of host adapter that is used. The
default is the parallel port interface.

(Global variables sb)+= (2a) <10b 3lcp
/** Which interface is used? 0 equals parallel port interface, 1

equals ISA card interface. */
static int used_interface = PARALLEL_PORT;

Defines:
used_interface, used in chunks 31-34.
Uses PARALLEL PORT 30a.

30

The first case is the reset of the ER2. Tt has to call the appropriate function
ic_ifc reset_er2 or pp_ifc_reset_er2.

31a (Case Reset 31a)= (29¢)

case IOCTL_ER2_RESET: if (used_interface == PARALLEL_PORT)

{
pp_ifc_reset_er2();

}

else
{

ic_ifc_reset_er2();
¥

break;

Uses ic_ifc reset_er2 26b, IOCTL_ER2 RESET 28b, PARALLEL PORT 30a, pp_ifc_reset_er2 20c,
and used_interface 30b.

Next is the interrupt IRQ2, used for sending messages from the root processor

to others in the network.

31b (Case Interrupt 31b)= (29¢)

case IOCTL_ER2_IRQ: if (used_interface == PARALLEL_PORT)
{
pp_ifc_irq_er2();
}

else
{

ic_ifc_irq_er2();
¥

break;

Uses ic_ifc_irq_er2 28a, IOCTL ER2_TRQ 28b, PARALLEL PORT 30a, pp-ifc_irq er2 22a,

and used_interface 30b.
It is desirable to be able to read /write not only one word, but fill a whole buffer
with one access, i.e. call of IOCTL_ER2 READ WORDS or IOCTL _ER2 WRITE WORDS.
So, another global variable is added for the length of the data buffer that can be
set by IOCTL_ER2_SET LENGTH. Since the default valueis 1, IOCTL_ER2_SET LENGTH
does not have to be called each time before reading/writing a single word.

3lc (Global variables s5b)+= (2a) <30b

/*% The length of the data buffer. */
static int buffer_length = 1;

Defines:
buffer_length, used in chunks 32-34.
It is the task of the application to ensure that the data array is properly initial-
ized and its length is correct.
After each IOCTL_ER2 READ WORDS, IOCTL_ER2_WRITE WORDS and IOCTL_ER2 WRITE_ADDRESS
the length of the buffer is set back to 1 automatically.

31

The next case writes data words. After deciding which interface is selected, the
pointer ioctl_param and the kernel function get user are used to write the
data words one after the other.

32a (Case Write Words 32a)= (29¢)

case IOCTL_ER2_WRITE_WORDS: temp = (int #*) ioctl_param;
if (used_interface == PARALLEL_PORT)

{
(PP:Case Write Words 32b)

}

else

{
(IC:Case Write Words 32¢c)
¥

/* Set buffer length to default */
buffer_length = 1;
break;

Uses buffer length 31c, IOCTL ER2 WRITE WORDS 28b, PARALLEL PORT 30a,
and used_interface 30b.

32b (PP:Case Write Words 32b)= (32a)

for (; buffer_length > 0; buffer_length--)
{

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
get_user(data, temp++);

#else

data = get_user(temp++);
#endif

pp_ifc_write_data_word(data);
}

Uses buffer length 31c, KERNEL_VERSION 4b, and pp_ifc write data word 23b.

32¢ (IC:Case Write Words 32¢)= (32a)

for (; buffer_length > 0; buffer_length--)
{

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
get_user(data, temp++);

#else
data = get_user(temp++);

#endif

ic_ifc_write_data_word(data);

32

33a

33b

33c

Uses buffer_length 31c, ic_ifc_write_dataword 26¢, and KERNEL VERSION 4b.

For writing an address the length of the buffer is disregarded. Just one address
is written and buffer length is set back to 1.

(Case Write Address 33a)= (29¢)
case IOCTL_ER2_WRITE_ADDRESS: temp = (int *) ioctl_param;

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

get_user(data, temp);
#else

data = get_user(temp);
#endif

(which interface is used? 33b)

/* Set buffer length to default */
buffer_length = 1;
break;

Uses buffer length 31c, IOCTL_ER2 WRITE_ADDRESS 28b, and KERNEL_VERSION 4b.

(which interface is used? 33b)= (33a)

/* Which interface is used? */
if (used_interface == PARALLEL_PORT)
{
pp_ifc_write_address_word(data);
¥
else
{
ic_ifc_write_address_word(data);

}

Uses ic_ifc write_address word 26d, PARALLEL PORT 30a, pp_ifc_write address_word 24a,
and used_interface 30b.
Reading data words is similar to writing. Depending on the used interface, the

pointer ioctl_param and the kernel function put_user are used to fill the buffer
with data.

(Case Read Words 33c)= (29¢)

case IOCTL_ER2_READ_WORDS: temp = (int *) ioctl_param;
if (used_interface == PARALLEL_PORT)

{
(PP:Case Read Words 34a)

}

else

33

34a

34b

34c

34d

{
(IC:Case Read Words 34b)
¥

/* Set buffer length to default */
buffer_length = 1;
break;

Uses buffer length 31c, IOCTL_ER2_READ WORDS 28b, PARALLEL PORT 30a,
and used_interface 30b.

(PP:Case Read Words 34a)= (33¢)
for (; buffer_length > 0; buffer_length--)
{
data = pp_ifc_read_data_word();
put_user(data, temp++);
¥

Uses buffer_ length 31c and pp_ifc_read dataword 24b.

(IC:Case Read Words 34b)= (33¢)
for (; buffer_length > 0; buffer_length--)
{
data = ic_ifc_read_data_word();
put_user(data, temp++);
}

Uses buffer_length 31c and ic_ifc_read data word 27a.

This function sets the new length of the data buffer. After the next read or
write operation the length will be set back to the default of “1” automatically.

(Case Set Length 34c)= (29¢)

case IOCTL_ER2_SET_LENGTH: temp = (int *) ioctl_param;
buffer_length = *temp;
break;

Uses buffer length 31c and I0OCTL_ER2_SET_LENGTH 28b.

The interface type should only be changed right after the device was opened,
such that things do not end mixed up.

(Case Set Interface 34d)= (29¢)

case IOCTL_ER2_SET_INTERFACE: temp = (int *) ioctl_param;
if (*temp == PARALLEL_PORT)
{
used_interface = PARALLEL_PORT;
}

else

34

35a

35b

{
used_interface = ISA_CARD;
¥

break;

Uses IOCTL_ER2_SET_INTERFACE 28b, ISA_CARD 30a, PARALLEL PORT 30a, and used_interface
30b.

That’s all for the device driver. Now, only the module declarations are left:

(Module declarations 35a)= (2a)
(VFS Struct 35b)
(Init Module 36a)
(Cleanup Module 36c)

The struct Fops holds the functions to be called by the VFS (Virtual Filesystem
Switch) if a process interacts with the created device.

(VFS Struct 35b)= (35a)

/** Struct that holds the VFS functions for the device. */
static struct file_operations Fops =
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,0)
owner: THIS_MODULE,

read: er2p_read, /* read */
write: er2p_write, /* write */
ioctl: er2p_ioctl, /* ioctl */
open: er2p_open, /* open */
release: er2p_release /* release */
#else
NULL, /* seek */
er2p_read, /* read */
er2p_write, /* write */
NULL, /* readdir */
NULL, /* select */
er2p_ioctl, /* ioctl */
NULL, /* mmap */
er2p_open, /* open */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
NULL, /* flush */
#endif
er2p_release /* release */
#endif
3

Uses er2p_ioctl 29b, er2p_open 7a, er2p read 13a, er2p_release 11b 11b, er2p write 14,
and KERNEL_VERSION 4b.

While initializing the module the main—and in fact, only—task is to register
the device driver. The claiming of 10 ports is done in er2p_open. This enables
other applications—e.g. the parport driver—to use the printer port for different

35

tasks as long as the device er2p is not opened, although the module may be

loaded.

36a (Init Module 36a)= (35a)

/** Initializes the module by registering the device driver.
Q@return 0 for success, < 0 for an error

*/

int init_module()

{

int ret;
(try to register the device driver 36b)

return(SUCCESS) ;
¥

Defines:
init module, used in chunk 36b.
Uses SUCCESS 5a.

For earlier kernels (< 2.4.x) the function register_chrdev has to be replaced
by module register _chrdev (see [3]).

36b (try to register the device driver 36b)= (36a)
ret = register_chrdev(DEVICE_MAJOR, DEVICE_NAME, &Fops);

/* Negative return values signify an error */

if (ret < 0)

{
printk("ER2P: <init_module> : Registering device failed with %d!", ret);
return(ret);

}
printk ("ER2P: Device registered with major device number %d\n'", DEVICE_MAJOR);

Uses Device 3c, DEVICE MAJOR 28b, DEVICE NAME 5a, and init module 36a.

The last thing is the cleanup. The device driver has to be unregistered for
removing the kernel module.

36¢ (Cleanup Module 36c¢)= (35a)

/*% Cleanup by unregistering the appropriate file from /proc
*/
void cleanup_module()

{

int ret;

(unregister the device 37)

36

37

Defines:
cleanupmodule, used in chunk 37.
Uses file 3a 30a.

For earlier kernels (< 2.4.x) the function unregister chrdev has to be replaced
by module unregister_chrdev (see [3]).

(unregister the device 37)= (36¢)
ret = unregister_chrdev(DEVICE_MAJOR, DEVICE_NAME);

if (ret < 0)
{

printk("ER2P: <cleanup_module> : Error %d while unregistering\n", ret);

X

Uses cleanupmodule 36c, DEVICE MAJOR 28b, and DEVICE NAME 5a.

That’s it. The device driver module is now ready for use. But, how does this
usage look like?

3 Additional defines

Depending on the flags the Linux kernel was compiled with, there are two other
symbols that might have to be included to the device driver module.

e _SMP__ — Symmetrical MultiProcessing. This has to be defined if the
kernel was compiled to support symmetrical multiprocessing, even if just

one CPU is used.

e CONFIG MODVERSIONS — If CONFIG_MODVERSIONS was enabled in the ker-
nel the symbol has to be defined when compiling the module and also
/usr/include/linux/modversions.h has to be included.

The right place to check how the kernel was built is /usr/include/linux/config.h.

4 The Makefile

Now the module can be compiled by using the prepared Makefile with the
command

make

and then—changing to root mode—the new module and the created headers

should be installed by
make install

Please, regard that the complete kernel sources have to be installed for the
compilation.

37

38

For older versions of the Linux kernel (< 2.4.x) the following Makefile can
be used. The variable USE_PARPORT probably has to be undefined then. Ad-
ditionally, the functions register chrdev and unregister _chrdev have to be
replaced by module register chrdev and module unregister chrdev, respec-
tively (see [3]).

(Makefile.old 38)=
CC=gcc
MODCFLAGS=-02 -Wall -DMODULE -D__KERNEL__ -DLINUX
INCLINUX=/usr/include

all: er2p.o

er2p.o: er2p.c $(INCLINUX)/linux/version.h
$(CC) er2p.c -c $(MODCFLAGS) -I$(INCLINUX)

er2p.c: er2p.nw
notangle -Rer2p.c er2p.nw > er2p.c
notangle -Rer2p.h er2p.nw > er2p.h

5 Imnserting and removing the module

Get root to insert and remove kernel modules. Then, the device driver module
can be inserted by the command:

modprobe er2p

If everything went fine and the module was properly inserted, it should appear
in /proc/modules. This can be checked with either

cat /proc/modules
or
1smod

Now, the device file (see 6.1) can communicate with the host adapter.
For removing the module again, one has to type:

rmmod er2p

6 Talking to the device

6.1 Creating a device file

In order to talk to the device a device file has to be created. Being root one has
to change the current directory to /dev. Then, the proper device file can be
created by:

38

39

mknod er2p c 219 0

The resulting file normally has read/write access only for its owner, which is root
in this case. For the other users a new group—mnamed “er2” for example—should
be added to the system. After issueing the commands:

chgrp er2 /dev/er2p
chmod g+w /dev/er2p

all members of this group can use the device file.

6.2 Ensure correct settings for parallel port

Once again the remark: The parallel port interface for the ER2 needs the
EPP/SPP mode! Furthermore, the IO addresses are fixed to the parallel port
LPT1 at 0x378. So make sure that the appropriate settings in the BIOS are
correct.

6.3 Example program

Now, a short example is given of how to use the ioctl functions:

(erZptest.c 39)=
#include <fcntl.h>
#include "er2gdef.h"
#include "er2p.h"

int main(void)
{
int file_desc, data;
int mem_address = 0x5000;

(try to open device file 40a)

(reset the ER2 aob)

(detect number of root processor 40d)
(initialize memory at mem-address 40c)
(check data at mem-address 40e)

(write memory at mem-address 41a)
(read data at mem-address 41b)

/* close device file */
close(file_desc);

return(0);

Defines:
main, never used.
Uses file 3a 30a.

39

40a (try to open device file 40a)= (39)
/* try to open device file */
file_desc = open('"/dev/er2p", O_RDONLY);
if (file_desc < 0)
{
printf("Can not open device file er2p!\n");
return(-1);

}
Uses file 3a 30a.

40b (reset the ER2 40b)= (39)
/* reset ER2 */
ioctl(file_desc, IOCTL_ER2_RESET, &data);

Uses IOCTL_ER2 RESET 28b.

40¢ (initialize memory at mem-address 40c)= (39)

data = mem_address;

/* set address */

ioctl(file_desc, IOCTL_ER2_WRITE_ADDRESS, &data);
/* write 16-bit word */

data = 0x0000;

ioctl(file_desc, IOCTL_ER2_WRITE_WORDS, &data);

Uses IOCTL_ER2 WRITE_ADDRESS 28b and IOCTL_ER2 WRITE WORDS 28b.

40d (detect number of root processor 40d)= (39)

data = 0x4207;

/* set address */

ioctl(file_desc, IOCTL_ER2_WRITE_ADDRESS, &data);
/* read 16-bit word */

ioctl(file_desc, IOCTL_ER2_READ_WORDS, &data);
printf("Root is #Jd...\n", data);

Uses IOCTL_ER2 READ _WORDS 28b and IOCTL_ER2 WRITE_ADDRESS 28b.

40e (check data at mem-address 40e)= (39)

data = mem_address;

/* set address */

ioctl(file_desc, IOCTL_ER2_WRITE_ADDRESS, &data);

/* read 16-bit word */

ioctl(file_desc, IOCTL_ER2_READ_WORDS, &data);

printf("16 bit word at address %X is : %X\n", mem_address, data);

Uses I0CTL_ER2_READ _WORDS 28b and IOCTL_ER2 WRITE_ADDRESS 28b.

40

4la

41b

(write memory at mem-address 41a)= (39)

data = mem_address;

/* set address */

ioctl(file_desc, IOCTL_ER2_WRITE_ADDRESS, &data);
/* write 16-bit word */

data = 0xDBDB;

ioctl(file_desc, IOCTL_ER2_WRITE_WORDS, &data);

Uses IOCTL_ER2 WRITE_ADDRESS 28b and I0OCTL_ER2 WRITE WORDS 28b.

(read data at mem-address 41b)= (39)

data = mem_address;

/* set address */

ioctl(file_desc, IOCTL_ER2_WRITE_ADDRESS, &data);

/* read 16-bit word */

ioctl(file_desc, IOCTL_ER2_READ_WORDS, &data);

printf("16-bit word at address %X is : %X\n", mem_address, data);

Uses I0OCTL_ER2_READ _WORDS 28b and IOCTL_ER2 WRITE_ADDRESS 28b.

List of code chunks

This list was generated automatically by NOWEB. The numeral is that of the
first definition of the chunk.

(Attach port 8e)

(Auziliary IOCH functions 15b)

(Case Interrupt 31b)

(Case Read Words 33c)

(Case Reset 31a)

(Case Set Interface 34d)

(Case Set Length 34c)

(Case Statement 29¢)

(Case Write Address 33a)

(Case Write Words 32a)

(check data at mem-address 40e)

(check if device has not been opened yet Tb)
(check if ISA port regions are accessible 7c)
(claim ISA port regions 11a)
(claim parallel port regions 10c)
(Cleanup Module 36c)
(Defines 5a)
(Defines for the ISA card 6c)
(Defines for the parallel port 6b)
(Detach port 9a)
(detect number of root processor a40d)
(Device declarations 5c)
(

Device I0Ctl 15a)

41

Device IOCH function 29b)
Device Open Ta)

Device Read 13a)

Device Release 11b)

Device Write 14)
Disclaimer 3b)

er2qdef.h 30a)

erlp.c 2a)

er2p.h 2b)

er@ptest.c 39)

fill buffer with zeros 13b)
Global variables 5b)

Header 3c)

HF':Defines 28b)

HF:Header 3a)

HF:Include files 29a)
IC:Auziliary I0CH functions 25a)
IC:Case Read Words 3ab)
IC:Case Write Words 32c)
IC:Generate Strobe 25c)
IC:Read Word Data 27a)
IC:Reset ER2 26b)
IC:Trigger ER2 Interrupt 28a)
IC:Write Word Address 26d)
IC:Write Word Data 26c)

Init Module 36a)

initialize memory at mem-address 40c)

Linuz includes ab)
Makefile.old 38)

Module declarations 35a)
Parport support functions sd)
PP:Auziliary IOCHl functions 15c)
PP:Case Read Words 34a)
PP:Case Write Words 32b)
PP:Read Data 23a)

PP:Read Latch 22b)

PP:Read Word Data 24b)
PP:Reset ER2 20c)

PP:Send Strobe Signal 20b)
PP:Trigger ER2 Interrupt 22a)
PP:Write Address 21c)
PP:Write Byte 21b)

PP:Write Latch 21a)
PP:Write Word Address 24a)
PP:Write Word Data 23b)
read data at mem-address 41b)
register driver with parport 9b)
register parallel device 10a)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(Include files 4a)
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

release ISA port regions 12a)

42

release parallel port regions 12b)
reset the ER2 aob)

try to open device file 40a)

try to register the device driver 36b)

unregister the device 37)
VFS Struct 35b)
which interface is used? 33b)

(
(
(
(
(unregister parallel device driver 12c)
(
(
(
(write memory at mem-address 41a)

Index

This is a list of identifiers used, and where they appear. Underlined entries
indicate the place of definition.

_ER2GDEF H: 30a

_ER2P H: 2b

buffer length: 3lc, 32a, 32b, 32¢c, 33a, 33c, 34a, 34b, 34c
byte: 20a, 20b, 21a, 21b, 21c, 22b, 23a, 23b, 24a, 24b
cleanup module: 36¢c, 37

Device: 3a, 3c, Tb, 36b

DEVICE FILE NAME: 28b

device_is open: 5b, 7a, 7b, 11b

DEVICE MAJOR: 28b, 36b, 37

DEVICE NAME: 5a, 9c, 10c, 11a, 36b, 37

er2p_attach: 8e, 9c

er2p_detach: 9a, 9c

er2p device: 10b, 10c, 12b, 12¢

er2p driver: 9c, 10a

er2p_ioctl: 29b, 35b

er2p.open: 7a, 35b

er2p.port: 10b, 10c, 12b

er2p.read: 13a, 35b

er2p release: 1lb, 11b, 35b

er2p_write: 14, 35b

ERROR: 30a

file: 3a, 3b, 3c, 7a, 11b, 13a, 14, 28b, 29b, 30a, 36¢, 39, 40a
IC_ADDRESS _MODE: 6c, 26d

ic_ifc_generate strobe: 25c, 26b, 26¢, 26d, 27a
ic_ifc_irq_er2: 28a, 31b

ic_ifc_read data word: 27a, 34b

ic_ifc reset_er2: 26b, 31a

ic_ifc write_address_word: 26d, 28a, 33b
ic_ifc write data word: 26¢c, 32c

IC_OUTP LATCH: 6c, 7c, 11a, 12a, 26¢, 26d, 27a
IC_READ MODE: 6c, 27a

IC_RESET DELAY: 26a, 26b

IC_RESET_MODE: 6c, 26b

IC_STROBE HIGH: 6c¢, 25¢

IC_STROBE_LOW: 6c¢, 25¢

43

IC_WRITE_MODE: 6c¢, 26¢

init_module: 36a, 36b

IOCTL_ER2_IRQ: 28b, 31b

I0CTL_ER2 READ_WORDS: 28b, 33c, 40d, 40¢, 41b
IOCTL_ER2 RESET: 28b, 31a, 40b
IOCTL_ER2_SET_INTERFACE: 28b, 34d

IOCTL_ER2_SET LENGTH: 28b, 34c

I0CTL_ER2 WRITE_ADDRESS: 28b, 33a, 40c, 40d, 40e, 41a, 41b
IOCTL_ER2 WRITE WORDS: 28b, 32a, 40c, 41a

IRQ: 27b, 28a

ISA_CARD: 30a, 34d

ISA_STROBEDELAY: 25b, 25¢, 26¢, 26d
KERNEL_VERSION: 4b, 11b, 13a, 14, 32b, 32c, 33a, 35b
main: 39

MODVERSIONS: 4b

0K: 30a

PARALLEL_PORT: 30a, 30b, 31a, 31b, 32a, 33b, 33c, 34d
PP_IFC_IRQ_ER2: 19, 22a

pp-ifc_irq er2: 22a, 31b

PP_IFC READ DATA: 19, 23a

pp-ifc _read data word: 24b, 34a
PP_IFC READ LATCH: 19, 22b

PP_IFC RESET ER2: 19, 20c

pp_ifc reset er2: 20c, 3la

pp_ifc_send strobe: 20b, 20c, 21a, 21b, 21c, 22a
PP_IFC_STROBE_HIGH: 19, 20b, 22b, 23a
PP_IFC_STROBE_LOW: 19, 20b, 22b, 23a
PP_IFC_WRITE_ADDRESS: 19, 21c

pp-ifc write_address: 2lc, 24a

pp_ifc write address word: 24a, 33b

PP_IFC WRITEDATA: 19, 21b

pp-ifc write data: 21b, 23b
pp_ifc write data word: 23b, 32b

PP_IFC WRITE LATCH: 19, 21a

pp-ifc_write latch: 2la, 23b, 24a
PP_LPT1_COMMAND: 6b, 20b, 20c, 21a, 21b, 21c, 22a, 22b, 23a
PP_LPT1DATA: 6b, 9b, 10c, 12b, 21a, 21b, 21c, 22b, 23a
PP_LPT1_STATUS: 6b

PP_STROBE_DELAY: 19, 20b, 22b, 23a

ssize t: 13a, 14

SUCCESS: 5a, 7a, 29b, 36a

USE_PARPORT: 8a, 8b, 8c, 9b, 9¢, 10b, 10c, 12b, 12¢c
used_interface: 30b, 31a, 31b, 32a, 33b, 33c, 34d

44

References

(1]

[2]

Dirk Bachle. Ermittlung der Datentransferraten fur den alten und neuen

Host-Adapter des FR2, 2000. Internal report.

Georg-Friedrich Mayer-Lindenberg. Message Passing tm ER2 und Funktio-
nen der Laufzeitkerne, 1997. Internal report.

Ori Pomerantz. Linux Kernel Module Programming Guide, 1999. Version
1.1.0.

Peter Jay Salzman and Ori Pomerantz. Linuz Kernel Mod-
ule Programming Guide, 2003. Version 2.4.0, available at
http://tldp.org/LDP/lkmpg/lkmpg . pdf.

Tim Waugh. The Linux 2.4 Parallel Port Subsystem, 2000.

45

